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Abstract. Time modeling is a crucial feature in many application do-
mains. However, temporal information often is not crisp, but is uncertain,
subjective and vague. This is particularly true when representing histori-
cal information, as historical accounts are inherently imprecise. Similarly,
we conjecture that in the Semantic Web representing uncertain temporal
information will be a common requirement. Hence, existing approaches
for temporal modeling based on crisp representation of time cannot be
applied to these advanced modeling tasks. To overcome these difficulties,
in this paper we present fuzzy interval-based temporal model capable
of representing imprecise temporal knowledge. Our approach naturally
subsumes existing crisp temporal models, i.e. crisp temporal relation-
ships are intuitively represented in our system. Apart from presenting
the fuzzy temporal model, we discuss how this model is integrated with
the ontology model to allow annotating ontology definitions with time
specifications.

1 Introduction

Time modeling is a crucial feature in many application domains, such as medicine,
history, criminal and financial applications. Its importance is shown by the nu-
merous works in the area of temporal databases [1,2] and temporal reasoning [3].
Our experience from the EU-IST sponsored VICODI project! supports this claim
fully. The main aim of this project is to develop an ontology of European history
used for semantical indexing of historical documents. The goal of the VICODI
system is to demonstrate benefits of semantics by improving searching and nav-
igation in historical databases. We note that the system is not intended to be
used by the general public, but is aimed at power-users, such as historians and

* This work was partially supported by the EU in the framework of the VICODI
project (EU-IST-2001-37534)
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librarians. Therefore, the expressivity and accuracy of the modeling capabilities
are crucial to the success of the project.

It is quite obvious that time modeling is a fundamental issue for modeling
historical information, since almost every historical statement is time dependent.
Moreover, we identified several specific features that make capturing this infor-
mation a challenge. For one, time information in history is often uncertain or
ill-defined. It is usually extracted from historical documents written in an im-
precise and inherently vague style. Even worse, important documents are often
missing or contain contradictory information, so temporal information about his-
torical events is uncertain. Apart from the uncertainty of temporal information,
historical events are often abstract, so their definition is inherently subjective.
For example, we have found it impossible to precisely define the time span of
the ‘Middle Ages’.

To the best knowledge of authors, there is no existing approach for tem-
poral modeling which is capable of capturing such uncertain, subjective and
vague temporal information. The vast majority of related work concentrates on
modeling crisp and definite temporal information (for which we use synonyms
‘traditional’ or ‘classical’ in this paper). Moreover, existing approaches for mod-
eling imprecise temporal information focus on handling either uncertainty or
subjectivity, but not both. Therefore, we decided to propose a new model ca-
pable of fulfilling our requirements. We designed our model based on a rigorous
requirements analysis. Although this analysis is driven by our application sce-
nario, we believe that the temporal model is general enough to be applied in
other settings demanding advanced temporal modeling as well. Also, temporal
model alone is not worth much — a mechanism for embedding it into an ontology
model is needed. Hence, in this paper we present an approach for integrating two
orthogonal models, namely the temporal and the ontology model, into a unified
modeling framework.

This paper is organized as follows. Section 2 introduces the requirements
posed by temporal knowledge in history. Section 3 formally introduces our tem-
poral model. Section 4 shows how to extend the classical temporal interval re-
lations introduced by J.F.Allen [4] to our model. Section 5 discusses various
properties of the new temporal model, and Section 6 discusses how to integrate
the temporal model in ontologies. Section 7 analyzes related work and Section 8
concludes the paper and provides some outlook about future work.

2 Requirements

In this section we discuss requirements we gathered in the course of the VICODI
project, based on which we design our temporal model. Although these require-
ments come from the domain of modeling historical information, they are still
valid in many other application settings.

2.1 Unique Features of Historical Temporal Knowledge

History, as a human science, is different from natural sciences, mainly because in-
formation sources are historical documents written by people using vague natural



languages, using vague and subjective concepts, such as ‘revolution’ or ‘golden
age’. Therefore, the concepts found in these sources, as well as their temporal
specifications, are often imprecise.

Based on the accounts of history experts in the VICODI project, debate and
disagreement over temporal specifications in history is rather the norm than an
exception. This makes modelling this type of knowledge extremely difficult. In
this subsection we discuss the nature of these challenges and give some examples.

Uncertainty. Sometimes information about a historical event can only be de-
duced from documents reporting about related events. Often several documents
state contradictory facts about some event. As an example consider Stalin’s
birthdate. Officially for the USSR it is 21 December 1879 but according to church
records his birth was registered in 6 December 1878. Historians are in disagree-
ment over which time specification is the right one.

In such a case we say that the temporal specification of the event is uncertain.
In natural language such uncertain temporal specifications are often written
informally as 7 - 1640 (meaning that the beginning time of the event is unknown)
or as ca. 1801 (meaning circa, or around this year).

Subjectivity. Many historical events are not exactly defined, but are subjective.
For example, the ‘early renaissance’, ‘Russian revolution’ or ‘industrial revolu-
tion” do not have a clear definition, so it is impossible to clearly state exactly
when these events occurred. In this case it is intuitive for historians to talk
about ‘beginning or end phases’, ‘process, development and core periods’ or of
‘transition periods’, which clearly indicates that the traditional model of having
temporal intervals with definite start and end points does not meet the reality
in this case.

Vagueness. Historical time specifications are given at different granularity (years,
months, days) and are often defined fuzzily (early morning, spring etc.). Hence,
the temporal specification is not known precisely, but is vague. The reader may
also note that any temporal specification made in a natural language will become
vague if we refine the granularity of temporal axis sufficiently.

There are also events exhibiting a combination of the afore mentioned prop-
erties, so the temporal model should be capable of representing all of them in a
unified manner.

2.2 Temporal Relations

Since the goal of the VICODI project is to allow creating powerful temporal
queries, expressive relations among temporal primitives are of paramount im-
portance. The model should at least be able to represent the temporal interval
relations defined by Allen in [4]. Apart from these relations, we have found out
that the relation intersects, checking whether two time intervals have a com-
mon point, is crucial in the historical context. Hence, Table 1 summarizes all of
the operations required. For an interval i, i~ denotes the starting point of the
interval, and it denotes the ending point of the interval.



It is a natural requirement that our temporal model should, if applied to
traditional temporal specifications, yield the same results as in classical temporal
models. With other words, our approach should naturally subsume the classical
case.

2.3 Temporal Specifications vs. General Theory of Time

Our requirements differ from those found usually in temporal reasoning liter-
ature (eg. [5-8]). Our goal is not to develop a general axiomatization of time
using which one can reason about time. For example, in temporal logic one can
axiomatize that event A occurred before event B, and event B occurred before
event C. Then one can derive that A occurred before C, even without knowing
the exact time when either of the events occurred.

In our application field we are dealing primarily with concrete temporal spec-
ifications, which may be imprecise, but still use absolute dates. In such setting,
axiomatizing total order of the time dimension is not necessary, since it follows
naturally from the total order of dates. We have found out that many appli-
cation domains share this fundamental feature: rather than requiring a general
theory of time allowing arbitrary inferences, they deal with numerous concrete
temporal facts associated domain entities. In such setting a general theory of
time is an overkill, requiring inferencing capabilities of significant computational
complexity. We can replace these with more efficient mechanisms, implemented
outside the logical framework.

3 Fuzzy Temporal Model

3.1 Basic Decisions

Intervals or Points? The most fundamental question in any temporal model
is the choice of the basic temporal primitive. Literature mentions two usual
primitives [3,9]: time instants (or time points, chronons) and time intervals. A
temporal model can be based on either or on both of them. In literature there
there is an ongoing debate about which primitive is more appropriate, with no
clear winner. While in the temporal database research community the time in-
stant is more commonly used [2], in the artificial intelligence community time
interval or mixed approaches are more popular [3]. In [3] it has been argued
that the choice of the basic primitive mostly depends on the application require-
ments. We believe that time intervals are closer to human intuitive perception of
time. Instants can always be viewed as time intervals if the granularity of time
dimension is sufficiently increased. Further, intervals lend themselves to intuitive
generalization to the fuzzy case.

Continuous vs. Discrete Temporal Model. Although there are some good argu-
ments in the temporal database literature (e.g. [10]) for using a discrete time
model, most of the approaches in Al use the continuous model, as it fits well
with the choice of intervals as the basic primitive. Under a continuous temporal
model, each natural language ‘time point’ translates to an interval in the tem-
poral model, which is not necessarily the case for the discrete model. Therefore,



we choose the unbounded, continuous time line 7" as the basis for defining time
intervals, which is isomorphic to the set of real numbers, i.e. there exists a nat-
ural total ordering among elements of 7. Elements of 7 are termed as ‘time
points’ in this paper. To anchor this abstract time line to a real calendar system,
we choose the zero time point ¢y to match to the zero point of the Gregorian
calendar, measured by the Greenwich Mean Time (GMT).

3.2 Time Intervals as Fuzzy Sets

We base the rest of this paper extensively on fuzzy set theory [11]. In Appendix
we give a brief overview of fuzzy set theory, along with the pointers to relevant
introductory literature.

In the following presentation, we assume that we need to represent a crisp
interval ¢ when a historical event happens. We denote with i~ its crisp starting
point and with " its crisp ending point. As discussed in Section 2.1, although
the interval is crisp (after all, historical events really did occur at some precise
time), the interval’s start and ending points may not be known precisely. We call
such an interval imprecise and model it by means of a fuzzy set I, defined by its
membership function I : 7 — [0,1]. I(t) represents our confidence level that ¢
is in i. If I(t) = 0, we are completely confident that ¢ is not in i; if I(t) = 1, we
are completely confident that ¢ is in 4. We term such a fuzzy set representing an
abstract interval as a fuzzy interval. We denote the set of all fuzzy intervals as
T

Fuzzy intervals are capable of representing imprecision caused by all of the
three special properties of historical knowledge (vagueness, uncertainty or sub-
jectivity) in a unifying way. Indeed, the possibility to express partial confidence
of the membership of some time point ¢ in ¢ allows us the express the impre-
cision of the accounts about the interval i, regardless of the actual nature of
imprecision.

We do not pose any constraints on the fuzzy intervals except from the re-
quirement that they should be convex, thus reflecting our requirement that the
abstract interval ¢ which is represented by the fuzzy interval should be contin-
uous. Although some events occur at time intervals which are not continuous
(e.g. ‘Poland exists as a country’), they can be represented as a set of subevents
denoting continuous parts of the original event (e.g. ‘Poland exists for the first
time’, ‘Poland is divided among the Russian Empire, the Habsburg Empire and
Prussia/Germany’ and ‘Poland exists again’).

In the case of convex fuzzy sets, their support and core are continuous. Fur-
ther, all time points of i must be in the support of I (denoted as Sj). Le., if
t ¢ Sj, then we are certain that ¢ ¢ i. We also assume that all of the time points
in the core of I (denoted as Cj) are really members of i. Le., if t € C}, then we
are certain that ¢ € 7. This can also be written as C; C i C Sj.

4 Fuzzy Temporal Relations

In this section we show how to realize relations from Table 1 in our fuzzy model.
We start with the observation that, since our intervals are not crisp, our relations



will also not be crisp. After all, since the intervals are not exact, we cannot
exactly determine whether one interval precedes the other one. Hence, given
two imprecise crisp intervals ¢ and j and a crisp temporal relation €, the fuzzy
temporal relation 0 will take fuzzy sets I and J and produce a number ¢ € [0, 1],
giving the confidence that the classical temporal 6 relation holds between i and
J.

Extending classical temporal relations to fuzzy sets is not easy, since classi-
cal relations in Table 1 are defined using interval endpoints. However, for fuzzy
intervals the notion of endpoints is meaningless. Therefore, we define fuzzy tem-
poral relations in an alternative way, compatible with the crisp case. We do this
in several steps: first we reformulate the definition of crisp temporal relations
based on the set operations on intervals, thus eliminating references to interval
endpoints. In doing so, we introduce several auxiliary unary operators on inter-
vals (e.g. ‘before extension’), representing intervals with particular relationship
to the original interval (e.g. interval additionally including the time before the
interval). After that we extend the definitions of temporal relations to the fuzzy
case by providing a fuzzy counterpart of auxiliary operators and reusing the
usual fuzzy set operations.

4.1 Defining Crisp Temporal Relations using Set Operations

The basic idea for eliminating references to interval endpoints is the following.
Firstly, if ¢; < to, then the interval between ¢; and ts is not equal to the empty
set. This we can be written as

t1 <ty & (tl,tg)#w (1)

Secondly, if ¢; = t9, then we have to make sure that both intervals (t1,t2)
and (tg,t1) are empty sets, thus expressing that neither ¢; is after t5 or vice
versa. This we can be written as

t1 =ty & (t1,t2) =0 A (t2,81) =10 (2)

Further, we define several auxiliary unary operators on intervals. The role of
these operators is to construct the intervals commonly used in definitions of tem-
poral relations. The following eight operators <—, <—, >— >— <+, <+, >+, >+
take an interval and construct an interval containing all of the time points which
are (strictly) before or (strictly) after the starting or ending point of the original
interval. E.g. <—(i) = (—00,i7). The definition of these operators is given in
Table 2.

Now we are ready to redefine the temporal relations using the ideas presented
in (1) and (2) and the unary operators from Table 2. We explain how this is
done for the starts relation, since its definition uses both endpoint equality
and inequality. Other relations are defined similarly and are given in Table 3.
We did not redefine the after, overlapped-by, contains, met-by, started-by
and finished-by relations, as they are simply the inverse of other relations.



We start the redefinition of the starts relation by repeating the definition
from Table 1:

istartsj] = i" =45 A it <j* (3)
The constraint i~ = j~ can be expressed as (cf. (2))
=i e ) =0 A ) =0 (@)

which can be written with the help of auxiliary unary operators as

>—()N<—() =0 AN >=G)Nn<—G) =0 (5)

because we know that

(1, t2) = (t1,+00) N (=00, 12) (6)

This last step is needed to eliminate all references to interval endpoints in
the definition.
Similarly, the constraint i* < j* can be expressed using (1) and (6) as

it <jt e >+ n<+() #0 (7)

Hence, the starts relation can be defined by means of set operations on
intervals as

>—()N<—(j) =0 A
istartsj = >—(j)N<—(i) =0 A (8)
>+()N<+(j) #0
Finally, we note that the intersects relation has not been derived from the
definition in Table 1. Instead, simply the fact was used that it expresses the

constraint that the intersection of 7 and j is not empty.

4.2 Extending Auxiliary Interval Operators to Fuzzy Intervals

In this section we extend the auxiliary interval operators to operate on fuzzy
intervals. We denote the extended operators with the same symbols, i.e. as
<—,<—,>—,>—, <+, <+, >+, >+, exactly as in the crisp case. Each operator 6
will be function 6 : T — Z, i.e it will take a fuzzy interval and yield another fuzzy

interval. The semantics of (1) should be understood as follows: (I )(t) gives our
confidence that ¢ is in 8(i). For example, <—(I)(t) represents our confidence that
t is in <—(7). In order to make our notation simpler, we will sometimes write
é(f) as jg

In the rest of this section we will show how to extend the operators >— and
<— to the fuzzy case. The other operators can be extended in a similar manner,
and their definitions are shown in Table 4.

The operator >— should, for some fuzzy interval I representing interval i,
give a fuzzy interval I _, representing the interval >—(i). Let s; and S}f denote



Table 1. Required Temporal Re-

lations
Interval Relation Definition
i before j it <
¢ after j 7 before ¢ Table 3. Transcribed Temporal Relations
1 overlaps j iT<jN i >
A it <Gt Temporal Relation Definition
1 overlapped-by j j overlaps i t before j >+(E) N <=() #0
iduringj |4 >j A i <j' ioverlaps j | >—(i)N<—(j) #0 A
1 contains j J during ¢ <+(@) N>=(j) #0 A
i meets j it =3 >+(i) N <+(j) #0
i met-by j j meets i i during j <=(@)N>=() #0 A
istartsj i =j A it <j@ >+(6) N <+(j) #0
i started-by j j starts ¢ i meets j >+(@)N<=(5) =0 A
i finishes j |j <i A il =g <+(@HN>=() =0
i finished-by j j finishes ¢ i starts j >—()N<=() =0 A
Tequals j i =j A iF =47 <= N>=(5) =0 A
i intersects j |i' >j A i <j@ >+(1) N <+(j) #0
i finishes j <—(@)N>—=() #0 A
Table 2. Auxiliary Unary Opera- >+ N<+(G) =0 A
tors on Intervals <+@)N>+(G) =0
Operator Result v equals j >_(Z:) n <_(]:) i oA
— = <—@HN>=G)=0A
= =p=tan sy,
= = > <+(i) N>+(j) =0
>=  [>=() = (7, +00) i intersects j iNj#0
2= 2= =[i",+00)
<+ [<+() = (—00,i")
<t [S406) = (—00,i7]
>+ [>+() = (iT, +o0)
>+ [>—(i) = [it,400)

the starting and ending points of S; (i.e. of the the support of f) By assumptions
from Section 3.2, we known that ¢ C Sj. Therefore, I>_(t) should be 0 for each

t < s;, and should be 1 for each ¢t > s;f, as we know that each time point

before s; are before 77, and we know that each time point after 5}' is after it

and therefore also after ¢~. For a ¢t € S, we can tell that our confidence that
t € >—(i) should be as big as our confidence that s € >—(i) for any s < t.
Therefore we define the operator >— : I — I as follows:

0 if t< S;
Is_(t) = sup,o, I(s5) if t€5; (9)
1 if ¢t> Si+

The definition of the operator <— is easy if we already defined the >— op-
erator. We note that, if t € <—(i), then ¢ ¢ >—(i). Therefore we simply define
the I fuzzy interval as the fuzzy complement of the I>_ fuzzy interval:



T =IS () =1-L_() (10)

The results of applying the >— and <— operators on a fuzzy interval are
shown in Figure 1.

4.3 Constraints using Comparison with Empty Set

Before we can finally extend the definitions of the temporal relations to fuzzy
intervals, we must extended constraints of the form anNd # @ and anNdb =
to fuzzy intervals. We use the following intuition: the value sup, I(t) (i.e. the
maximum confidence of membership of any time point in the interval) gives the
confidence that some t is in 4, i.e. our confidence that 7 is not empty.

Since fuzzy intersection is expressed using min operator (cf. Appendix), our

confidence that a N'b # () can be represented as

sgp min(A(t), B(t)) (11)

Since a N'b = () is simply the negation of a N b # @, our confidence in that
this constraint is fulfilled is given as

1— stip min(;l(t), B(t)) = irtlf max(;lc(t), Bc(t)) (12)

4.4 Temporal Relations on Fuzzy Intervals

Now we are ready to extend the definition of the temporal relations to fuzzy
intervals based on the transformed definitions from Table 3. We define a fuzzy
temporal relation ~ as a function +y : IxI— [0, 1]. In another words, a temporal
relation takes two fuzzy intervals and gives the confidence that the crisp temporal
relation holds between the abstract intervals represented by the respective fuzzy
intervals. We denote the fuzzy temporal relations with big letters to distinguish
them from their crisp counterparts.

We discuss the definition of relation STARTS(I,.J). Other relations can be
defined in a similar way, and they are shown in Table 5. We start from the
definition of the crisp relation starts, which was defined in Section 4.1 as

>—(i)N<=(j) =0
istartsj = >—(j)N<—(i) =10
>+(i) N<+(j) # 0

After applying the rules for transcribing the constraints (cf. subsection 4.3)
we get:

A
A (13)

STARTS([, J) = min(
inf; max(I<_(t),

inf, max(I>— (t), J<(t))
J

sup, min(L-. (1),



Table 4. Auxiliary Op-

Table 5. Temporal Relations on Fuzzy Intervals

erators on Fuzzy Inter- Relation Definition
vals BEFORE(],)) sup, min(L . (1), J— (1)
0 6(I)(t) OVERLAPS(/,J) | min( sup, min(I_(t), J<—(t)) ,
<—| 1-T-_(t) sup, min(Z< (t), /> (1)) ,
—1-%_ sup, min(L 1 (1), Je (1)) )
0 ift<S- DURING(Z,J) min( sup, min( [<— (1), {>,(t)) ,
>—| sup,_, I(s) ifte€S; _ Supy mln({>+(t), ~<+(t)) )
1 ift> S;r MEETS(I,J) min( inf; max({7+(t), ~2_(15)) ,
0 it <5 _ inf max(T> (1), J<_ (1)) )
>—| sup,., I(s) iftesS; STARTS(/,.J) min( inf; max(I<_(¢), J>—(t)) ,
L s st infomax(T (6), J= (1)
0 if t < S7 _ sup, min(l>+ (1), J<+()) )
<+| sup,., I(s) ifte€ S; FINISHES(I,J) | min( inf, maX(I:+(t), ~Z+(t)) ,
1 if t > ST inf, max(I>+(t), J<+ (1)
0 it <5 B sup, min(Z (1), J— (1)) )
<+| sup,-, f(s) ift € S; EQUALS(I,J) min( inf; max(I<4 (¢), J>+(t)) ,
L iress infemax (T (1), J<4 (1))
>4 1—T<_(t) infy max(I<-(t), J>-(¢)) ,
>+ 11 (t) - inf, max(l>_(t), J<- (t)) )
INTERSECTS(7,J) sup, min(1(t), J(t))

5 Discussion

In this section we discuss the model and relations presented in Sections 3 and 4
and demonstrate how they fulfill the requirements from Section 2.

Representing Imprecise Information. As discussed briefly in Section 3.2, fuzzy
intervals are capable of representing all three causes of impreciseness in history.
They represent the net confidence of the history expert about the statement ¢ € i,
where the lack of confidence can be caused by any combination of vagueness,
uncertainty and subjectivity.

Of course, in a realistic application scenario historical experts will not specify
fuzzy intervals by encoding their confidence about each ¢t € 7, but will apply
some heuristics on their intuitive temporal knowledge. Finding the best heuristics
in the specific cases is subject of further research. As an example, we show a
possible interpretation of the intervals ‘late twenties — early thirties’; ‘3207 B.C.
—280B.C." and ‘Russian Revolution happens’ in Figure 1, each of them showing
one of the special characteristics of historical knowledge.

Compatibility with Crisp Case It is easy to see that fuzzy relations are natural
extensions of the classical ones, as they give the same results on crisp intervals
as the classical ones. This is because we defined the fuzzy relations based on
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Fig. 1. Fuzzy intervals (a) ‘late twenties’ — ‘early thirties’ (b) 3207 B.C. — 280B.C.
(c) Russian Revolution happens (d) I>— and I_

the original definitions of the classical relations. Hence, the requirements on the
compatibility with the crisp case is fulfilled completely.

Intuitiveness of Fuzzy Relations. We believe that our fuzzy relations yield intu-
itive result, where ‘intuitive’ for us means that the relation gives 1 as result if
we are completely certain that the classical relation exists between the classical
abstract intervals represented by the fuzzy intervals, and 0 if we are certain that
this is impossible. A result between 0 and 1 is given if neither of these possibili-
ties are sure. E.g. in case of the BEFORE(I,.J), it should yield 0 if S5 before S
holds (i.e. we are sure that i before j holds) and it should yield 1 if Cj before
C7 does not hold (i.e. we are sure that i before j does not hold). Intuitiveness
can similarly be checked for other fuzzy relations as well.

6 Connecting Temporal and Ontology Models

In this section we discuss how the temporal model described previously is used in
ontology modeling. Our approach for integrating temporal and ontology models
is general and not tied to any particular model. However, to make the discussion
more concrete, we briefly describe the designated ontology model first, after
which we show how model integration is actually done.



6.1 Target Ontology Model

Out target ontology model is that of KAON? - an ontology management frame-
work developed by FZI and AIFB at University of Karlsruhe. The model [12]
is based on RDF(S) [13], allowing modeling of concepts, properties, instances
and relations between instances. It extends RDF(S) with several useful features,
such as symmetric, transitive and inverse properties. Unlike RDF(S), however,
KAON does not support reification of statements, due to the fact that formal
semantics of the KAON language is much more similar to OWL [14] (actually,
KAON ontology model is currently being extended with OWL primitives using
results from logic programming [15]). As it is the case in all description log-
ics based languages, formal semantics of OWL is based on the usual first-order
theory. However, contrary to OWL, KAON semantics is based on HiLog [16],
providing a clean mechanism for second-order flavor of the ontology language.
For example, in KAON it is possible to interpret a symbol as a concept or as
an instance, depending on the symbol’s context. In KAON information about
concepts and instances is structured in OI-models (ontology-instance models).
Figure 2 shows a fragment of the VICODI OI-model.

6.2 Integrating Temporal and Ontology Model

Our approach for integrating the temporal model into ontological definitions
follows a pattern of modular semantics, which we believe will gain importance
in the near future as the complexity of domains being modeled increases. This
pattern is based on the observation that particular formalism may be good for
some modeling tasks, but totally inappropriate for other ones. Trying to apply
the most general formalism (e.g. first-order logic) to all modeling tasks usually
results in cumbersome systems with inadequate performance. Rather, a more
promising approach is to combine various formalisms in a modular way, thus
harvesting the best of each of them. In this paper we apply this principle to
time modeling. However, we could imagine a spatial algebra being orthogonally
added to the temporal and description logics formalisms in a similar manner.

Our approach may schematically be described as in Figure 3. On the left-hand
side of the figure is the ontology model with its HiLog semantics, whereas on the
right-hand side is the fuzzy temporal model with the semantics as described in
Sections 3 and 4. These two heterogeneous semantics are orthogonal and need
to be integrated at the syntactical and at the semantic level.

Integration at the syntactical level defines how to physically connect ele-
ments from one model with another. We have found out that data types pro-
vide an excellent mechanism for this purpose. Many ontology languages (e.g.
OWL) offer the capability of modeling atomic objects whose semantics is out
of scope of the logical theory. In semantic interpretation of the ontology, in-
stances of data types are interpreted as members of some concrete domain (of-
ten denoted as Ap). On the other hand, ontology instances are interpreted as

2 http://kaon.semanticweb.org/



takes-place-at -

semantic integration
I g se ¢ integratic

Temporal
Relation

Predicates -\‘F
Fuzzy

Temporal
Model

takes-place-atq Brutus-Caesar-

rutus

Ontology
334D Model 1 Datatypes (ae--nmoooooo-

syntactic
integration

wham

LEGEND: »

N Fig. 3. Integrating Ontology and

Fuzzy Temporal Models

Fig. 2. Fragment of VICODI OI-
model

members of the abstract domain (often denoted as A!). The concrete and ab-
stract domains must be disjoint, thus causing the semantics of data types and
of the ontology model to be separated. In our case, we introduced a separate
TEMPORALSPECIFICATION data type which is responsible for representing tem-
poral information. Currently, TEMPORALSPECIFICATION has only one sub-data
type called FUzzZyTIMEINTERVAL.

Integration at the semantic level defines how properties of one model seman-
tically relate to the other model. In our case this means we need to specify how
the temporal relations from Section 4 is represented in the first-order setting.
This is done by introducing for each temporal relation from Table 5 a many-
sorted predicate reflecting the logical properties of the relation. One can think
of these predicates as built-ins: the arguments of the predicate are fuzzy inter-
vals whose content is opaque to the logic infrastructure. The predicates serve as
a gate between the two worlds, providing an abstract interface to the interval
model. One must observe that the semantics of the predicates is not axiomatized
in first-order logic, but reasoning may still be performed on the arguments and
results of the predicates. Each predicate has an additional argument receiving
the fuzzy value of the relation. For example, if fuzzy interval I is before interval
J with confidence level 0.8, then the first-order formula BEFORE(I~ J ,0.8) is true.
Note that constraints on the confidence level can be expressed by using variables:

BEFORE(I,J, X) A X > 0.8 (15)

6.3 Annotating Ontology Definitions with Temporal Specifications

The previous subsection discussed how to integrate ontology and temporal model
at the generic level. However, an important question remains open: how to attach
the temporal specifications to the ontology definitions? For example, how to
represent the fact that French Revolution lasted from 1789 to 17947 Before
answering this question, we examine the types of ontology definitions to which
temporal specifications could be applicable at all.



Annotating Ontology Elements Themselves. At the first glance, it seems to be
useful annotating ontology definitions, such as concept or property declarations,
themselves, with time information in which the concept or property definition ex-
ists. For example, one might be tempted to state that the concept EUCOUNTRY
exists only after 1992. Before this date it does not make much sense to talk about
EU countries anyway. Another useful example is annotating the subconcept re-
lationship with time information, thus allowing representation of classification
which varies over time. Although useful at the first glance, such annotations
are extremely difficult to manage in a logical setting. Concept and property
declarations are semantically represented as predicates. In a first-order theory
one cannot attach additional information to predicates - one would need a full
second-order language where predicates can be treated as instances of meta-
predicates. Second-order logic is extremely difficult to manage, and introducing
such features in HiLog or first-order logic is extremely messy, so we decided not
to support such annotations. Further, ontology axioms stating that A is a sub-
class of B are tantamount to first-order formulas Vz(A(x) — B(z)). Annotating
formulas is not possible in any logic and the semantic interpretation of such
annotations has not been proposed yet.

After some considerations, one may see that such annotations often do not
make sense. One may argue that the concept of EU countries existed before
1992, it just did not have any instances. Therefore, this is in practice not really
a limitation. Thus, we have dismissed temporal annotations for ontology defini-
tions, but we allow temporal annotations for instances and relationships among
them.

Semantics of Temporal Specifications. When building ontologies containing tem-
poral information, a fundamental question about the meaning of temporal speci-
fications for ontology entities arises. Most approaches in temporal databases [10]
use only one type of time. Namely, each tuple in the database is annotated with
the validity time, thus specifying the period when the information represented
by the tuple is valid in the real world. In temporal reasoning the usual approach
is to associate an additional temporal argument with each predicate [3].

We argue that such approaches are too simple for many applications, as
they allow specifying only one type of time. For example, one may say that
ALLAN TURING LIVED from 23 June 1912 until 7 June 1954, which certainly
may be represented as his validity time. On the other hand, one may associate
with him additionally the interval from 1931 until 1935, which represents the
time when he studied at King’s College. Hence, we see that different types of
time information are needed for expressive ontology modeling. If needed, one
may additionally axiomatize the LIVED relation as validity time, but this is,
according to our opinion, domain-specific.

Annotating Relationships between Instances. A unique feature of ontologies con-
taining temporal information is that temporal information is not only associated
to instances (e.g. PERSON WAS-BORN-AT certain time), but also to relationships
between instances (e.g. BRUTUS KILLS CAESAR with annotation that this event



TAKES-PLACE-AT certain time). Capturing this type of information presents new
challenges to our approach for integrating temporal and ontology models. In par-
ticular, our ontology model allows connecting two instances through a property
instance (i.e. at the logical level all relationships between instances are repre-
sented as two-place predicates). This restriction is fundamental to our ontology
model, since it is known that ontology languages with predicates of arbitrary
arity may easily become undecidable.

We could solve this problem using reification approaches of RDFS. However,
as we explained in subsection 6.1, the semantics of statement reification is not
clean in RDFS and does not match well with the usual first-order semantics.
Therefore, we solve the problem by reifying relationships annotated by temporal
specifications into first-class objects. In another words, the example problem
presented above is solved by introducing the concept KILLING as a subconcept
of the EVENT concept, with properties WHO, WHOM and TAKES-PLACE-AT. This
solution is presented in Figure 2.

Although cumbersome at the first glance, this approach has an advantage
that all time information is represented in a uniform way through a taxonomy
of temporal properties. In this way selecting all events taking place at certain
point in time becomes very easy.

7 Related work

There is a significant amount of approaches for representing temporal informa-
tion in the areas of temporal reasoning and temporal databases. Most of these,
however, consider only classical time intervals (or time points) and do not deal
with any form of imprecisions.

There are some approaches, however, which provide some solutions for han-
dling uncertain temporal information. Most of them model uncertainty with
possibility or probability distributions on interval endpoints.

In the area of temporal databases [2], the approaches [17, 18] define the proba-
bility distribution of each endpoint of crisp time intervals. However, it is generally
debated whether probability distributions are appropriate for representing sub-
jective information at all, as objective statistics, that probability distributions
are based on, are often missing when defining subjective information [19].

Because of that, most approaches in temporal reasoning for modeling sub-
jective temporal knowledge use probability distributions expressed as fuzzy sets
to represent uncertainty. Dubois and Prade [5] propose an approach where end-
points of a fuzzy interval are modeled as fuzzy numbers. Further, they use pos-
sibility theory [20,19] to calculate time points which are possibly or necessarily
between the two fuzzy endpoints. They also provide fuzzy extensions of Allen’s
interval algebra and some basic inference mechanisms.

Kurutach [21] also proposes using fuzzy numbers representing interval end-
points similarly to Dubois and Prade. Moreover, he imposes constraints on the
length of intervals. Godo and Vila [7] propose using fuzzy sets constraining the
length of the time period between intervals. Although this approach is adequate
for some problems in the health-care domain, we found it quite inadequate for



modeling historical imprecise intervals as it is not possible to specify absolute
dates for intervals.

Almost all of the approaches for representing uncertain intervals is based
on the notion of uncertain interval endpoints. However, as it was discussed in
Section 2.1 it is not always intuitive to assume that there is a (possibly ill-
known) definite starting and ending point for an interval. There are some events,
where it makes sense of speaking of ‘transition periods’ in addition of a ‘core
period’. E.g. consider the case of the Russian revolution, whose interval is shown
in Figure 1. In this case the transtition periods are much longer as the core
period of the event. Using an endpoint-based approach one has to decide which
one of the possible endpoints to take, which means loosing information. With
our approach it is possible to model not only the core period of an event, but
also transtition, development etc. periods, which are only partially relevant for
a specific event. This is posisble because we define intervals directly, without
referencing the endpoints.

An interesting approach for representing uncertainty about time-dependent
events which follows a different idea as the works introduced so far is that of
Dutta’s [6]. He uses the set of known intervals as the universe for fuzzy sets. A
fuzzy set representing an event e shows the possibility for each interval ¢ that that
event occurs in it. Although this approach is different from the other described
approaches in the sense that it is capable of representing fuzzily defined events,
it views intervals themselves only as abstract, crisp entities without any further
temporal specification, therefore it is not applicable in our application scenario.

8 Conclusion and Outlook

In this paper we presented a fuzzy temporal model that is capable to represent
all aspects of historical temporal knowledge in a common formal framework.
Although the model’s design was based on the requirements from the applica-
tion domain of history, it can also be used in other application domains that
require representing uncertain, subjective and vague temporal knowledge (such
as health-care). Apart from defining the temporal model based on fuzzy sets, we
also generalized Allen’s temporal relations on intervals. We did this by providing
a definition of crisp interval relations based on set theory and then generalized
them to the fuzzy case.

Our temporal model is intended for use in ontology modeling. Hence, we pro-
vided an approach for integrating temporal and ontology models. The approach
follows the modular semantics pattern, which tries to keep the semantics of each
model separate and to provide clean interfaces between them.

We are presently working on a methodology for capturing fuzzy temporal
knowledge from experts. There are specifically two challenges we plan to address.
Firstly, we want to provide an easy, intuitive strategy for capturing temporal
specifications without the need to specify fuzzy intervals directly. In this way
we hope to make our system usable by non-IT experts. Secondly, a conversion
mechanism between different temporal granularities is needed since temporal



granularity of historical facts usually differs (e.g. some accounts are specified in
years and some in days).

We are also examining the different properties of our new fuzzy temporal

relations (like transitivity) which work will allow us to make basic inferences
even in case of fuzzy intervals (e.g. BEFORE(Z,J) = 0.8 A BEFORE(/J, K) =
0.7 = BEFORE(I, K) > 0.7).
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Appendix: Fuzzy Set Basics

In this appendix we briefly recapitulate the fundamental notions about the fuzzy
sets and fuzzy logic. Further details can be found in any textbook of fuzzy sets
or fuzzy logic (e.g. [22,23]).

Fuzzy sets generalize the notion of classical sets (also called as crisp sets as
a counterpart of fuzzy). A subset A of the set U (the universe of discourse) can
be specified using the characteristic function A:U — {0,1}. A(z) =1ifx € A
and A(z) = 0if ¢ ¢ A. Similarly, a fuzzy subset A of U can be characterized
with a membership function A : U — [0,1]. For each z € U A(z) represents the
membership grade of = in A. Hence, = can be a member of a A partially. We
call fuzzy subsets (of U) simply as fuzzy sets from now on and assume that the
universe of discourse is understood from the context.

Similarly as in the crisp case, logical connectives A, V and = may in the fuzzy
case be identified with the set operations N, U and A€ (the former is the fuzzy
complement of A). The usual definition of the fuzzy set operations (which we
will also use in this paper) are the following:

(A0 B)(z) = min(A(x), B(w)) (16)
(AU B)(z) = max(A(x), B(x)) (17)
AC(z) =1 - A(x) (18)

The core of A is the crisp set C; = {x € U : A(zx) = 1}, i.e. the set of

elements which completely belong to A and the support of A is the crisp set

i ={x el : A(x) > 0}, i.e. the set of elements which somewhat belong to A.
A fuzzy set A is called convex if the following holds:

VoV Ve, x € [z, 2] = A(z) > min(A(x), A(z2)) (19)



