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Abstract

We present a novel reasoning calculus for the Description Logic SHOIQ+—a knowl-
edge representation formalism with applications in areas such as the Semantic Web. In
order to reduce the nondeterminism due to general inclusion axioms, we base our calculus
on hypertableau and hyperresolution calculi, which we extend with a blocking condition
to ensure termination. To prevent the calculus from generating large models, we intro-
duce anywhere pairwise blocking. We also present a new way of ensuring termination
while allowing for nomials, inverse roles, and number restrictions—a combination of DL
constructs that has proven notoriously difficult to handle. Our preliminary implementa-
tion shows significant performance improvements on several well-known ontologies. To
the best of our knowledge, our reasoner is currently the only one that can classify the
original version of the GALEN terminology.
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1 Introduction

Description Logics (DLs) [3] are a family of knowledge representation formalisms
with well-understood formal properties. DLs have been applied to numerous prob-
lems in computer science. Recent interest in DLs has been spurred by their appli-
cation in the Semantic Web: the DL SHOIQ provides the logical underpinning
for the Web Ontology Language (OWL), and the DL SROIQ [27] is used in OWL
2—an extension of OWL currently being standardized by the W3C.

A central component of most DL applications is an efficient and scalable reasoner.
Modern reasoners, such as Pellet [31], FaCT++ [41], and RACER [18], are typically
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based on tableau calculi [3, Chapter 2], which demonstrate (un)satisfiability of
a knowledge base K via a constructive search for an abstraction of a model of
K. Numerous optimizations have been developed in an effort to reduce the size
of the search space [3, Chapter 9]. Despite major advances in tableau reasoning
algorithms, ontologies are still encountered in practice that cannot be handled by
existing DL reasoners. Two main sources of inefficiency have been identified in
literature [3, Chapter 3].

Or-branching is one source of inefficiency in tableau algorithms: given a disjunc-
tive assertion (C tD)(s), a tableau algorithm nondeterministically guesses that
either C(s) or D(s) is true. To show unsatisfiability of K, every possible guess
must lead to a contradiction: if assuming C(s) leads to a contradiction, the algo-
rithm must backtrack and assume D(s), which can give rise to exponential behav-
ior. General concept inclusions (GCIs)—implications of the form C v D—are the
main source of disjunctions: to ensure that C v D holds, a tableau algorithm adds
a disjunction (¬C t D)(s) to each individual s in the model. Various absorption
optimizations [3, Chapter 9][24,39] reduce the nondeterminism in such a proce-
dure; however, they often fail to eliminate all sources of nondeterminism. This may
be the case even for ontologies that can be translated into Horn clauses (such as
GALEN, NCI, and SNOMED), for which reasoning without any nondeterminism
should be possible in principle.

And-branching is another source of inefficiency in tableau algorithms: the expan-
sion of a model due to existential quantifiers can generate very large models. Apart
from memory consumption problems, and-branching can increase or-branching by
increasing the number of individuals to which GCIs are applied.

In this paper, we present a reasoning calculus that addresses both sources of com-
plexity. We focus on the DL SHOIQ+, which is obtained by extending SHOIQ
with local reflexivity and disjoint, reflexive, irreflexive, symmetric, and asymmetric
roles. The main difference between SHOIQ+ and SROIQ is that the latter pro-
vides for generalized role inclusions of the form R1 ◦ . . . ◦Rn v R. We conjecture
that generalized role inclusions can be encoded using standard GCIs as proposed
by Demri and de Nivelle [10]; thus, by adding a suitable preprocessing phase, the
results from this paper should allow us to handle SROIQ and OWL 2 as well.

Our algorithm first preprocesses a SHOIQ+ knowledge base into DL-clauses—
universally quantified implications containing DL concepts and roles as predicates.
The main inference rule for DL-clauses is hyperresolution: an atom from the head
of a DL-clause is derived only if all atoms from the DL-clause body can be matched
to already derived consequences. On Horn clauses, this calculus is deterministic,
which eliminates all or-branching. This is in contrast with existing DL tableau
calculi, which often behave nondeterministically on Horn problems. Our algorithm
can thus be viewed as a hybrid of resolution and tableau, and is related to the
hypertableau [6] and hyperresolution [34] calculi.

Hyperresolution decides many fragments of first-order logic (see, e.g., [13,12] for
an overview), as well as various description and modal logics (e.g., [15,26]). Unlike
most of these fragments, SHOIQ+ allows for cyclic GCIs of the form C v ∃R.C,
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on which hyperresolution can generate infinite paths of successors. Therefore, to
ensure termination, we use the pairwise blocking technique from [23] to detect cyclic
computations. Due to hyper-inferences, the soundness and correctness proofs from
[23] do not carry over immediately to our calculus; in fact, certain simpler blocking
conditions for weaker DLs cannot be applied in a straightforward manner in our
setting. To limit and-branching, we extend the blocking condition from [23] to
anywhere pairwise blocking : an individual can be blocked by an individual that is
not necessarily an ancestor, which can reduce the sizes of the constructed models.
Anywhere blocking has already been used with subset blocking [2]; however, to
the best of our knowledge, it has been neither used with the more sophisticated
pairwise blocking nor tested in practice.

Ensuring termination of a tableau decision procedure for SHOIQ is known
to be notoriously difficult, mainly due to a certain interaction between nominals,
inverse roles, and number restrictions. This problem has been finally solved in
[21] by extending the tableau calculus with a nominal generation rule. In certain
situations, this rule guesses and introduces a new nominals, and is thus a potential
source of inefficiency in practice. In this paper, we present a simpler and more
efficient rule that, we believe, can be implemented more easily.

We have implemented our calculus in a new reasoner called HermiT. 1 Even with
a relatively näıve implementation, our reasoner outperforms existing reasoners on
several real-world ontologies. For example, the deterministic treatment of GCIs
significantly reduces the classification time for the NCI ontology. Furthermore, the
pairwise anywhere blocking strategy seems to be very effective in limiting model
sizes. To the best of our knowledge, our reasoner is currently the only one that can
classify the original version of the GALEN terminology.

2 Preliminaries

The description logic SHOIQ+ is obtained from SROIQ [27] by disallow-
ing general role inclusions, and it is defined as follows. A signature is a triple
Σ = (NR, NC , NI) consisting of mutually disjoint sets of atomic roles NR, atomic
concepts NC , and individuals NI . The set of roles is then NR ∪ {R− | R ∈ NR}.
For R ∈ NR, let Inv(R) = R− and Inv(R−) = R. An RBox R is a finite set of ax-
ioms of the form R1 v R2 (role inclusions), Dis(S1, S2) (role disjointness), Ref(R)
(reflexivity), Irr(S) (irreflexivity), Sym(R) (symmetry), Asy(S) (asymmetry), and
Tra(R) (transitivity), where R, R1, and R2 are roles, and S, S1, and S2 are simple
roles, as defined next. Let v∗R be the reflexive-transitive closure of the relation
{R1 v R2, Inv(R1) v Inv(R2) | R1 v R2 ∈ R}. A role R is transitive in R if a role
R′ exists such that R′ v∗R R, R v∗R R′, and either Tra(R′) ∈ R or Tra(Inv(R′)) ∈ R.
A role S is simple if no transitive role R exists such that R v∗R S. The set of con-
cepts is the smallest set containing > (the top concept), ⊥ (the bottom concept),
A (atomic concept), {a} (nominal), ¬C (negation), C u D (conjunction), C t D
1 http://web.comlab.ox.ac.uk/people/boris.motik/HermiT/

3

http://web.comlab.ox.ac.uk/people/boris.motik/HermiT/


Table 1
Model-Theoretic Semantics of SHOIQ+

Semantics of Roles and Concepts Semantics of Axioms
(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}
>I = 4I

⊥I = ∅
{s}I = {sI}

(¬C)I = 4I \ CI
(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}
(∀R.C)I = {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}

(∃S.Self)I = {x | 〈x, x〉 ∈ SI}
(≥ nS.C)I = {x | ]{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}
(≤ nS.C)I = {x | ]{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}

C v D ⇒ CI ⊆ DI

R1 v R2 ⇒ RI1 ⊆ RI2
Dis(S1, S2)⇒ SI1 ∩ SI2 = ∅
Ref(R) ⇒ ∀x ∈ 4I : 〈x, x〉 ∈ RI
Irr(S) ⇒ ∀x ∈ 4I : 〈x, x〉 6∈ SI
Sym(R) ⇒ RI ⊆ (Inv(R))I

Asy(S) ⇒ SI ∩ (Inv(S))I = ∅
Tra(R) ⇒ (RI)+ ⊆ RI
C(a) ⇒ aI ∈ CI
R(a, b) ⇒ 〈aI , bI〉 ∈ RI
a ≈ b ⇒ aI = bI

a 6≈ b ⇒ aI 6= bI

Note: ]N is the number of elements in N , and R+ is the transitive closure of R.

(disjunction), ∃R.C (existential restriction), ∀R.C (universal restriction), ∃S.Self
(local reflexivity), ≥ nS.C (at-least restriction), and ≤ nS.C (at-most restriction),
for A an atomic concept, a an individual, C and D concepts, R a role, S a simple
role, and n a nonnegative integer. A TBox T is a finite set of general concept inclu-
sions (GCIs) C v D for C and D concepts. An ABox A is a finite set of assertions
of the form C(a) (concept assertion), R(a, b) (role assertion), a ≈ b (equality as-
sertion), and a 6≈ b (inequality assertion), where C is a concept, R is a role, and a
and b are individuals. A SHOIQ+ knowledge base K is a triple (R, T ,A).

An interpretation for K is a tuple I = (4I , ·I), where 4I is a nonempty set, and
·I assigns an element aI ∈ 4I to each individual a, a set AI ⊆ 4I to each atomic
concept A, and a relation RI ⊆ 4I × 4I to each atomic role R. The function
·I is extended to concepts and roles as shown in the left-hand side of Table 1.
I is a model of K, written I |= K, if it satisfies all axioms of K as shown in the
right-hand side of Table 1. The basic inference problem for SHOIQ+ is checking
satisfiability of K—that is, checking whether a model of K exists. A concept C
subsumes a concept D, written K |= C v D, if CI ⊆ DI for each model I of K. It
is well known that K |= C v D if and only if K ∪ {(C u ¬D)(a)} is unsatisfiable,
where a is an individual that does not occur in K [3].

The negation-normal form nnf(C) of a concept C is the concept equivalent to C
in which negations occur only in front of atomic concepts and concepts of the form
{a} and ∃S.Self. The concept nnf(C) can be computed in time linear in the size of
C [3]. Let ¬̇C = nnf(¬C). With |K| we denote the size of K—that is, the number
of symbols required to encode K on the input tape of a Turing machine (num-
bers can be coded in binary). The DL ALCHOIQ+ is obtained from SHOIQ+

by disallowing transitivity axioms. SHOIQ is obtained from SHOIQ+ by dis-
allowing local reflexivity, role disjointness, reflexivity, irreflexivity, symmetry, and
asymmetry. SHIQ, SHOQ, and SHIO are obtained from SHOIQ by disallowing
transitive roles, nominals, inverse roles, and number restrictions, respectively.
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3 Motivation and Algorithm Overview

In this section, we present an overview of the main aspects of our algorithm.
We explain in Section 3.1 the roots of scalability problems in standard tableau
algorithms, and in Section 3.2 we outline the way in which we address them.

3.1 Causes of Scalability Problems in Tableau Algorithms

To show that a knowledge base K = (R, T ,A) is satisfiable, a tableau algorithm
constructs a sequence of ABoxes A = A0,A1, . . . ,An called a derivation, where
each Ai is obtained from Ai−1 by an application of one inference rule. 2 The infer-
ence rules make the information implicit in the axioms of R and T explicit, and
thus evolve the ABox A towards a (representation of a) model of K. The algorithm
terminates either if no inference rule is applicable to some An, in which case An
represents a model of K, or if An contains an obvious contradiction, in which case
the model construction has failed. The following inference rules are commonly used
in DL tableau calucli.

• t-rule: Given (C1 t C2)(s), derive either C1(s) or C2(s).

• u-rule: Given (C1 u C2)(s), derive C1(s) and C2(s).

• ∃-rule: Given (∃R.C)(s), derive R(s, t) and C(t) for t a fresh individual.

• ∀-rule: Given (∀R.C)(s) and R(s, t), derive C(t).

• v-rule: Given a GCI C v D and an individual s, derive (¬C tD)(s).

The t-rule is nondeterministic: if (C1 tC2)(s) is true, then C1(s) or C2(s) or both
are true. Therefore, tableau calculi make a nondeterministic guess and choose either
C1 or C2; if choosing C1 leads to a contradiction, the algorithm must backtrack
and try C2. Thus, K is unsatisfiable only if all choices fail to construct a model.
We next discuss two sources of complexity inherent in the tableau inference rules.

3.1.1 Or-Branching

Handing disjunctions through reasoning by case is often called or-branching, and
it is a major source of inefficiency [3]. Thev-rule is the main source of or-branching,
as it adds a disjunction for each GCI to each individual in an ABox. Consider the
following knowledge base consisting of the TBox T1 and the ABox A1.

T1 = {∃R.A v A}
A1 = {¬A(a0), R(a0, b1), R(b1, a1), . . . , R(an−1, bn), R(bn, an), A(an)}(1)

The ABox A1 is graphically shown in Figure 1. The individuals occurring in the
ABox are represented as black dots, an assertion of the form A(a0) is represented
by placing A next to the individual a0, and an assertion of the form R(a0, b1) is

2 Some formalizations of tableau algorithms work on completion graphs, which have a
natural correspondence to ABoxes.
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a0 b1 a1 an−1 bn an
R R R R

¬A
∀.R.¬A tA
∀.R.¬A

∀.R.¬A tA
¬A
∀.R.¬A

∀.R.¬A tA
∀.R.¬A
¬A

∀.R.¬A tA
∀.R.¬A
¬A

∀.R.¬A tA
¬A
∀.R.¬A

A
∀.R.¬A tA
∀.R.¬A
¬A

(i)
(ii)
(iii)
(iv)

Fig. 1. Or-Branching Example

represented as an R-labeled arrow from a0 to b1. Initially, A1 contains only the
concept assertions shown in line (i).

To satisfy the GCI in T1, a tableau algorithm applies the v-rule, thus adding
the assertions shown in line (ii) of Figure 1. Tableau algorithms usually have a sig-
nificant degree of freedom in choosing the order in which to process the assertions
in an ABox; in fact, finding an order that exhibits good performance in practice
requires advanced heuristics [40]. Let us assume that the algorithm chooses to pro-
cess the assertions on ai before those on bj. Hence, by applying the rules to all ai,
the algorithm derives the assertions shown in line (iii) of Figure 1; after that, by
applying the rules to all bi, the algorithm derives the assertions shown in line (iv)
of Figure 1. The ABox now contains both A(an) and ¬A(an), which is a contradic-
tion. Thus, the algorithm needs to backtrack its most recent choice, so it flips its
guess on bn−1 to A(bn−1). This generates a contradiction on bn−1, so the algorithm
backtracks from all guesses for bi, changes the guess on an to A(an), and repeats
the work for all bi. This also leads to a contradiction, so the algorithm must revise
its guess for an−1; but then, two guesses are again possible for an. In general, after
revising a guess for ai, all possibilities for aj, i < j ≤ n, must be reexamined, which
results in exponential behavior. None of the standard backtracking optimizations
[3, Chapter 9] are helpful: the problem arises because the order in which the indi-
viduals are processed makes the guesses on ai independent from the guesses on aj
for i 6= j.

The GCI ∃R.A v A, however, is not inherently nondeterministic: it is equiva-
lent to the Horn clause ∀x, y : [R(x, y) ∧ A(y)→ A(x)], which can be applied in a
bottom-up manner to derive the assertions A(bn), A(an−1), . . . , A(a0) and reveal a
contradiction on a0. These inferences are deterministic, so we can conclude that
K1 is unsatisfiable without any backtracking. This example suggests that the pro-
cessing of GCIs in tableau algorithms can be “unnecessarily” nondeterministic.

Various absorption optimizations [3, Chapter 9] have been developed to address
this problem. The basic absorption algorithm tries to rewrite GCIs into the form
B v C where B is an atomic concept. Then, instead of deriving ¬B t C for each
individual in an ABox, C(s) is derived only if the ABox contains B(s); thus, the
absorbed GCIs can be applied in a “more deterministic” way. This technique has
been extended in several ways. Role absorption [39] rewrites GCIs into the form
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S S

S

S S

S

(a) Ancestor Blocking

a

(b) Anywhere Blocking

Fig. 2. And-Branching Example

∃R.> v C; then, C(s) is derived only if an ABox contains R(s, t). Binary absorp-
tion [24] rewrites GCIs into the form B1 uB2 v C; then, C(s) is derived only if
an ABox contains both B1(s) and B2(s). Neither of these two optimizations, how-
ever, help us deal with the GCI in (1) directly. Role absorption produces an axiom
∃R.> v A u ∀R.¬A, which still contains a disjunction in the consequent. Further-
more, binary absorption is not applicable to (1), since the axiom does not contain
two concepts on the left-hand side of the implication symbol v. The axiom (1)
can be absorbed if it is rewritten as A v ∀R−.A. In practice, however, it is often
unclear in advance which combination of transformation and absorption techniques
will yield the best results. Therefore, absorption algorithms are in practice guided
primarily by heuristics and may not eliminate all nondeterminism.

3.1.2 And-Branching

The introduction of new individuals in the ∃-rule is often called and-branching,
and it is another major source of inefficiency in tableau algorithms [3]. Consider
the following (satisfiable) knowledge base K2.

T2 = { A1 v ≥ 2S.A2, . . . , An−1 v ≥ 2S.An, An v A1,
Ai v (B1 t C1) u . . . u (Bm t Cm) for 1 ≤ i ≤ n }

A2 = { A1(a) }
(2)

At-least restrictions are dealt with in tableau algorithms by the ≥-rule, which is
quite similar to the ∃-rule: from ≥ nR.C(s), the ≥-rule derives R(s, ti) and C(ti)
for 1 ≤ i ≤ n, and ti 6≈ tj for 1 ≤ i < j ≤ n. Thus, the fact A1(a) implies existence
of at least two individuals in A2, which imply existence of at least two individuals
in A3, and so on. A tableau algorithm thus constructs on K2 a binary tree, shown
in Figure 2a, in which with each individual is labeled with some Ai and an element
of Π = {B1, C1} × . . .× {Bm, Cm}. Each individual at depth n is an instance of
An; because of the GCI An v A1, this individual must be an instance of A1 as well,
so we can repeat the whole construction and generate an even deeper tree. Clearly,
a näıve application of the tableau rules does not terminate if the TBox contains
existential quantifiers in cycles.
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Fig. 3. Forest-Like Shape of ABoxes

To ensure termination is such cases, tableau algorithms employ blocking [23],
which is based on an important observation about the shape of ABoxes that can
be derived from some input ABox A. The individuals in A are called named (shown
as black dots), and they can be connected by role assertions in an arbitrary way.
The individuals introduced by the ∃- and ≥-rules are called blockable (shown as
white dots). For example, if ∃R.C(a) is expanded into R(a, s) and C(s), then s
is called a blockable individual and it is an R-successor of a. It is not difficult
to see that no tableau inference rule can connect s with some element of A: the
individual s can participate only in inferences that derive an assertion of the form
D(s), create a new successor of s, or, in the presence of (local) reflexivity, connect
s to itself. Hence, each ABox A′ obtained from A can be seen as a “forest” of the
form shown in Figure 3: each named individuals can be arbitrarily connected to
other named individuals and to a tree of blockable successors. The concept label
LA(s) is defined as the set of all concepts C such that C(s) ∈ A, and the edge label
LA(s, s′) as the set of all atomic roles such that R(s, s′) ∈ A.

The forest-like structure of ABoxes enables blocking. DLs such as SHIQ and
SHOIQ allow for inverse roles and number restrictions, which requires ancestor
pairwise blocking [23]: for s, s′, t, and t′ individuals of an ABox A as shown in
Figure 3, t blocks s (shown by a double edge on s) if and only if LA(s) = LA(t),
LA(s′) = LA(t′), LA(s, s′) = LA(t, t′), and LA(s′, s) = LA(t′, t); in the presence of
(local) reflexivity, we must additionally require that LA(s, s) = LA(t, t). In tableau
algorithms, the ∃- and ≥-rules are applicable only to nonblocked individuals, which
ensures termination: the number of different concept and edge labels is exponential
in |K|, so an exponentially long branch in a forest-like ABox must contain a blocked
individual, thus limiting the length of each branch in an ABox. LetA be an ABox as
in Figure 3 to which no tableau inference rule is applicable, and in which s is blocked
by t. We can construct a model from A by unraveling—that is, by replicating the
fragment between s and t infinitely often. Intuitively, blocking ensures that the
part of the ABox between s and s′ “behaves” just like the part between t and t′,
so unraveling indeed generates a model. If our logic were able to connect blockable
individuals in a non-tree-like way, then unraveling would not generate a model; in
fact, the notion of ancestors, descendants, and blocking would itself be ill-defined.

Consider now an “unlucky” run of a tableau algorithm with ancestor pairwise
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blocking on K2. The number of elements in Π is exponential, so it can happen that
blocking comes into effect only after the algorithm constructs an exponentially deep
tree; since the tree is binary, it is doubly exponential in total. In a “lucky” run,
the algorithm can always pick Bj instead of Cj; then, the algorithm constructs
a polynomially deep binary tree, so the tree is exponential in total. Thus, the
and-branching caused by the ∃- and ≥-rules limits the applicability of tableau
algorithms in practice.

3.2 Hypertableau Algorithm at a Glance

In this section we present an informal overview of our hypertableau algorithm
that addresses the problems due to or- and and-branching outlined in Section 3.1.
We present the algorithm formally in Section 4.

3.2.1 Inference Rules

The hyperresolution [34] calculus has often been used for first-order theorem
proving. It works on clauses—implications of the form

∧n
i=1 Ui →

∨m
j=1 Vj where Ui

and Vj are first-order atoms. The set of atoms {Ui} is called the antecedent, and
{Vj} is called the consequent ; we omit → in clauses with the empty antecedent.
The hyperresolution inference rule is defined as

A1 ∨D1 . . . Am ∨Dm B1 ∧ . . . ∧Bm → C1 ∨ . . . ∨ Ck
D1σ ∨ . . . ∨Dmσ ∨ C1σ ∨ . . . ∨ Ckσ

where Di is a possibly empty disjunction of literals and σ is the most general unifier
of (A1, B1), . . . , (Am, Bm). 3

The hypertableau calculus [6] is based on the observation that, if the literals
in a clause C1 ∨ . . . ∨ Cn do not share variables, we can replace the clause with a
nondeterministically chosen atom Ci that we assume to be true. A hypertableau
inference thus combines hyperresolution with splitting from the DPLL calculus for
the propositional logic [9] and it can be written as

A1 . . . Am B1 ∧ . . . ∧Bm → C1 ∨ . . . ∨ Ck
C1σ | . . . | Ckσ

where σ is the most general unifier of (A1, B1), . . . , (Am, Bm) and | represents or-
branching. On Horn clauses, the hypertableau calculus behaves deterministically;
thus, the calculus exhibits a “minimal” amount of nondeterminism in general.

The hypertableau calculus from [6] can be easily applied to DLs: GCIs can be
translated into first-order formulae [7], which can then be converted into clauses,

3 As it is standard in resolution theorem proving, the notation Ai ∨Di does not imply
that Ai is the left-most disjunct in the disjunction.
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as shown in the following example.

A v ∃R.B  ∀x : [A(x)→ ∃y : R(x, y) ∧B(y)]  
A(x)→ B(f(x))
A(x)→ R(x, f(x))

Let A be an ABox containing the assertions A(a), R(a, b), and B(b). The GCI
A v ∃R.B is clearly satisfied in A, so there is no need to perform any inference.
The clauses obtained by skolemization, however, are not satisfied in A, so the
hypertableau calculus derives R(a, f(a)) and B(f(a)). Hence, skolemization may
make the calculus perform unnecessary inferences, which may be inefficient.

Therefore, instead of working on skolemized clauses, our calculus first prepro-
cesses a SHOIQ+ knowledge base K into a pair Ξ(K) = (ΞT R(K),ΞA(K)), where
ΞA(K) is an ABox and ΞT R(K) is a set of DL-clauses—implications of the form∧n
i=1 Ui →

∨m
j=1 Vj, where Ui are of the form R(x, y) or A(x), and Vj are of the form

R(x, y), A(x), ∃R.C(x),≥ nR.C(x), or x ≈ y. The preprocessing step is introduced
formally in Section 4.1. The DL-clauses in ΞT R(K) are used in the Hyp-rule, which
is inspired by the hypertableau inference rule. For example, a GCI ∃R.¬A v B
is translated into a DL-clause R(x, y)→ B(x) ∨ A(y); then, if an ABox contains
R(a, b), the Hyp-rule derives either B(a) or A(b).

Apart from the Hyp-rule, the calculus contains the ≥-rule from the standard
tableau calculus to deal with the existential quantifiers. Furthermore, the Hyp-
rule can derive equalities of the form s ≈ t, which are dealt with using the ≈-
rule: whenever s ≈ t ∈ A and s 6= t, the ≈-rule replaces s with t or vice versa
in all assertions in A; this is usually called merging. The ⊥-rule detects obvious
contradictions, which can be of the form s 6≈ s, or A(s) and ¬A(s). Finally, the
NI -rule ensures termination in the presence of nominals, number restrictions, and
inverse roles; we discuss this rule in more detail in Section 3.2.4.

Our calculus is related to the tableau calculus for first-order logic presented in
[8], which also introduces new constants to satisfy the existential quantifiers in
a way that makes it complete for finite satisfiability. SHOIQ+ and similar DLs,
however, do not enjoy the finite model property [3], so the calculus from [8] does
provide a decision procedure. Furthermore, the calculus by itself is unlikely to be
practicable due to a high degree of nondeterminism.

Hyperresolution has been used to decide several description and modal logics
[15,26]. These approaches, however, rely on skolemization, which can be inefficient
in practice. Furthermore, these approaches deal with logics that are much weaker
than SHOIQ+; in particular, we are not aware of a hyperresolution-based decision
procedure that can handle inverse roles, number restrictions, and nominals.

3.2.2 Anywhere Pairwise Blocking

We employ pairwise blocking from Section 3.1.2 to ensure termination of the cal-
culus; to curb and-branching, however, we extend it to anywhere pairwise blocking.
The key idea is to extend the set of potential blockers for s beyond the ancestors
of s. In doing so, however, we must avoid cyclic blocks: if s is allowed to block t
and t can block s, then neither s nor t is guaranteed to have all the successors con-
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structed, which would render the calculus incomplete. Therefore, we parameterize
our algorithm with a strict ordering ≺ on individuals that contains the ancestor re-
lation. We allow t to block s only if, in addition to conditions mentioned in Section
3.1.2, we have t ≺ s. If ≺ coincides with the ancestor relation, anywhere blocking
becomes equivalent to the ancestor blocking.

Anywhere blocking can reduce and-branching in practice. Consider again the
knowledge base K2 from Section 3.1.2. After we exhaust the exponentially many
members of Π, all subsequently created individuals will be blocked. In the best
case, we can always choose Bj instead of Cj, so we create a polynomial path in the
tree and then use the individuals from that path to block their siblings, as shown
in Figure 2b. Hence, with anywhere blocking satisfiability of K2 can be checked in
polynomial time.

3.2.3 Problems Due to Merging

Merging can easily lead to termination problems even for very simple DLs, as
we demonstrate using the following example; for simplicity, we present the TBox
as a set of DL-clauses C3.

A3 = { A(a), ∃R.>(a), R(a, b), R(a, a) }
C3 = { R(x, y1) ∧R(x, y2)→ y1 ≈ y2, A(x) ∧R(x, y)→ ∃R.>(y) }(3)

Consider now the following derivation of the hypertableau calculus on A3 and C3,
shown in Figure 4: by the second DL-clause, the Hyp-rule derives ∃R.>(b), which
the ∃-rule expands to R(b, c); then, by the first DL-clause, the Hyp-rule derives
b ≈ a, so the ≈-rule merges b into a. Clearly, the resulting ABox is isomorphic to
the original one (that c is a blockable and b a root individual is not relevant here),
so we can repeat the same sequence of inferences, which leads to nontermination.
This problem, colloquially known as a “yo-yo,” has, to the best of our knowledge,
first been identified in [5].

This problem arises because, due to merging, a can have an unbounded number
of blockable R-successors: the blockable individual c is created as an R-successor
of b; however, merging b into a makes c a blockable R-successor of a. This, in turn,
allows us to apply the DL-clauses from C3 by mapping x to a an arbitrary number
of times, which leads to nontermination.

This problem can be solved by always merging a descendant s into its ancestor
t, and pruning s before merging—that is, by removing all assertions containing a
blockable descendant of s and thus ensuring that t does not “inherit” new succes-
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Fig. 5. Non-Tree-Like Structures due to Merging

sors. 4 In our example, before merging b into a, we prune b—that is, we remove the
assertion R(b, c). Merging then produces an ABox that represents a model of A3

and C3, so the algorithm terminates. Note that pruning is well-defined only because
our ABoxes are forest-shaped, cf. Figure 3: if connections between individuals were
arbitrary and, in particular, cyclic, it would not be clear which part of the ABox
should be pruned.

3.2.4 Nominals

Nominals can make ABoxes non-forest-like, as the following simple example
demonstrates. For presentation purposes, we use the concept ∃R.{c} in the DL-
clauses even though such concepts would be further broken down in our algorithm.

A4 = { A(a), A(b) }
C4 = { A(x)→ (∃R.B)(x), B(x)→ (∃R.C)(x), C(x)→ (∃S.{c})(x) }(4)

Successive applications of the Hyp- and ∃-rules on A4 and C4 can produce the
ABox A1

4 shown on the left-hand side of Figure 5. This ABox is clearly not forest-
shaped: the two role-paths in A1

4 start at the named individuals a and b, and end in
a named individual c. If role relations between blockable individuals remain forest-
like, however, termination of the derivation can be ensured easily. Some DLs that
include nominals produce only such extended forest-like ABoxes, but the property
is lost if the DL also includes both inverse roles and number restrictions [20].

Assume now that we extend C4 with the DL-clause S(y1, x) ∧ S(y2, x)→ y1 ≈ y2

(which axiomatizes S to be inverse-functional). On A1
4, the Hyp-rule then derives

s2 ≈ s4. Note that both s2 and s4 are blockable individuals; furthermore, neither
individual is an ancestor of the other, so we can merge, say, s4 into s2. This pro-
duces the ABox A2

4 shown on the right-hand side of Figure 5, and the assertion
R(s3, s2) makes A2

4 non-forest-shaped. By extending the example, it is possible to
use nominals, inverse roles, and number restrictions to arrange blockable individ-

4 In [23], the successors are not physically removed, but are marked as “not present” by
setting their edge labels to ∅. This has exactly the same effect as pruning.
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uals in cycles. This loss of forest-shaped models prevents us from using blocking
and pruning, and thus invalidates our termination arguments.

To solve this problem, we need to extend the arbitrarily interconnected part
of A2

4, cf. Figure 3: we can change the status of s2 from a blockable into a root
individual—that is, an individual similar to the named ones in that it can be
arbitrarily interconnected. After this change, only s1 and s3 are blockable in A2

4, so
the ABox has the extended forest-like shape and we can apply blocking and pruning
as usual. This is schematically shown in Figure 6. More generally, we apply the
following test (*): if an ABox A contains assertions R(s, a) and A(s) where a is a
root nor a named individual, and s is a blockable individual that is not a successor
of a, and if a must satisfy an at-most restriction of the form ≤ nR−.A, then we
change s into a root individual.

This solution, however, introduces another problem: the number of root individ-
uals can now grow arbitrarily, as shown in the following example.

A5 = { A(b) }

C5 =

{
A(x)→ (∃R.A)(x), A(x)→ (∃S.{a})(x),
S(y1, x) ∧ S(y2, x) ∧ S(y3, x)→ y1 ≈ y2 ∨ y2 ≈ y3 ∨ y1 ≈ y3

}
(5)

On A5 and C5, our calculus can produce the ABox A1
5 shown on the left-hand side

of Figure 7. Note that c and d satisfy condition (*), so we change them into root
individuals. Furthermore, the third DL-clause from C5 is not satisfied, so the Hyp-
rule derives c ≈ b, and the ≈-rule can merge c into b. Since c is now not a blockable
individual, we cannot prune it, so we obtain the ABox A2

5 shown in the middle of
Figure 7. 5 Since ∃R.A(d) is not satisfied, we can extend A2

5 with R(d, e), A(e),
∃R.A(e), ∃S.{a}(e), and S(e, a); however, this makes the third DL-clause from
C5 not satisfied, so we can merge d into b. This produces the ABox A3

5 that is
isomorphic to A1

5, so we can repeat the same inferences forever.

We solve this problem by introducing a new NI -rule, which refines condition (*).
Assume that an ABox A contains assertions R(s, a) and A(s) where s is a blockable
individual that is not a successor of a root or a named individual a; furthermore,
assume that a must satisfy an at-most restriction of the form ≤ nR−.A. In any
model of A, we can then have at most n different individuals bi that participate
in assertions of the form R(bi, a) and A(bi). Hence, we associate with a in advance
a set of n fresh root individuals {b1, . . . , bn} to serve as R−-neighbors for a. Then,

5 To reduce clutter, we do not repeat the labels of individuals.
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to turn s into a root individual, we nondeterministically choose bj from this set
and merge s into bj. In this way, the number of new root individuals that can be
introduced on the individual a is limited to n.

When formulating the NI -rule, we are faced with a technical problem: concepts
of the form ≤ nR.A are translated in our calculus into DL-clauses, which makes
testing the condition from the previous paragraph difficult. For example, an ap-
plication of the Hyp-rule to the third DL-clause in (5) (obtained from the axiom
> v ≤ 2S−.>) can produce an equality such as c ≈ b. This equality alone does
not reflect the fact that a must satisfy the at-most restriction ≤ 2S−.>. To enable
the application of the NI -rule, we introduce a notion of annotated equalities, in
which the annotations establish an association with the at-most restriction. The
third DL-clause from (5) is thus represented in our algorithm using as follows:

S(y1, x) ∧ S(y2, x) ∧ S(y3, x)→
y1 ≈ y2 @x

≤1S−.> ∨ y2 ≈ y3 @x
≤1S−.> ∨ y1 ≈ y3 @x

≤1S−.>
(6)

The Hyp-rule then derives c ≈ b@a
≤1S−.>, which has the same meaning as c ≈ b;

however, the annotation says that both b and c must also be merged with one of
the (two) individuals reserved for use as an S−-neighbor of a.

3.2.5 Nominals and Merging

Repeated merging between root individuals can lead to nontermination. Consider
an application of the hypertableau calculus to the following knowledge base:

A6 =
{
S(a, a), ∃R.B(a)

}
C6 =

{
B(x)→ ∃R.C(x), C(x)→ ∃S.D(x),
D(x)→ x ≈ a, S(y1, x) ∧ S(y2, x)→ y1 ≈ y2

}
(7)

At first, the calculus introduces two new blockable individuals, after which the
NI -rule converts the last one into a root individual; the resulting ABox A1

6 is shown
in the left-hand side of Figure 8a. Since S is inverse-functional, the individuals a and
c must be merged. Neither individual is an ancestor of the other, so we can choose
to merge a into c. The blockable individual b is then pruned, and the resulting
ABox is shown in the middle part of Figure 8a. The existential restriction ∃R.B on
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Fig. 8. The “Caterpillar” Example

c, however, is not satisfied, so a similar sequence of rule applications constructs the
ABox A2

6 shown in the right-hand side of of Figure 8a. This ABox is isomorphic to
A1

6, so the same inferences can be repeated forever.

This problem can be intuitively explained by the following observation. The NI -
rule introduces fresh root individuals as neighbors of an existing root individual;
thus, each root individual in an ABox can be seen as a part of a “chain” showing
which individual caused the introduction of each root individual. Each chain is
initially anchored at a named individual: such individuals occur in the input ABox
and are not introduced by the NI -rule. The length of a path of blockable individuals
can be used to limit the length of the “chains” of root individuals. If we allow chain
anchors to be removed from an ABox, then the chains remain limited in length in
any given ABox; however, over the course of derivation, one end of the chain can
be extended indefinitely as the other end is shortened.

We solve this problem by allowing named individuals to be merged only into
other named individuals. This ensures that each chain of root individuals always
remains anchored at a named individual, which effectively limits the distance of
each root individual to the maximal length of the chain. In our example, instead
of merging a into c, we merge c into a, which results in the ABox shown in Figure
8b. No derivation rule is applicable to this ABox, so the algorithm terminates.

3.2.6 The NI-Rule and Unraveling

The NI -rule is required not only to ensure that ABoxes are forest shaped, but
also to enable the application of blocking and unraveling. Consider the following
example knowledge base. Intuitively, the axioms of the knowledge base say that
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Fig. 9. The NI -rule and Unraveling

the individual a can have no R−-neighbors, and that there is an infinite chain of
individuals each of is an S−-neighbor of a.

A7 = { A(a), (∃R.B)(a), }

C7 =


A(x) ∧R(y, x)→ ⊥, B(x)→ (∃R.B)(x), B(x)→ (∃S.{a})(x),
R(y1, x) ∧R(y2, x)→ y1 ≈ y2,
S(y1, x) ∧ S(y2, x) ∧ S(y3, x) ∧ S(y4, x)→

y1 ≈ y2 ∨ y1 ≈ y3 ∨ y1 ≈ y4 ∨ y2 ≈ y3 ∨ y2 ≈ y4 ∨ y3 ≈ y4,


(8)

Without the NI -rule, an application of our calculus to A7 and C7 might produce
the ABox A1

7 shown in Figure 9. The individual d is blocked in A1
7 by the individual

c, so the derivation terminates. Note that the last DL-clause from C7 (which cor-
responds to the axiom > v ≤ 3S−) is satisfied: a is the only individual in A1

7 that
has S−-neighbors and it has only two such neighbors. To construct a model from
A1

7, we unravel the blocked parts of the ABox—that is, we construct an infinite
path that extends past d by “duplicating” the fragment of the model between c
and d an infinite number of times. This, however, creates additional S−-neighbors
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of a, which invalidates the last DL-clause from C7; thus, the unraveled ABox does
not define a model of A7 and C7.

The NI -rule elegantly solves this problem. Since a must satisfy an at-most re-
striction of the form ≤ 3S−, as soon as S(b, a), S(c, a), and S(d, a) are derived,
the NI -rule is applied to turn b, c, and d into root individuals. This corrects the
problems with unraveling: root individuals do not become blocked, so we intro-
duce another fresh blockable individual e. This individual is merged with another
S−-neighbor of a, producing an individual with two R−-neighbors. R is inverse-
functional, however, so the neighbors are merged. Merging continues until b has
been merged into a, causing a to become its own R-neighbor, at which point our
algorithm correctly determines that A7 ∪ C7 is inconsistent.

4 The Satisfiability Checking Algorithm

We now present the hypertableau algorithm that can be used to check satisfia-
bility of a SHOIQ+ knowledge base K. Our algorithm consists of two phases: the
preprocessing phase is the subject of Section 4.1, and the hypertableau phase is the
subject of Section 4.2.

4.1 Preprocessing

The goal of the preprocessing phase is to transform a SHOIQ+ knowledge base
K into an ABox and a set of DL-clauses that are equisatisfiable with K.

Definition 1 (DL-Clause). Let NV be a set of variables disjoint from the set of
individuals NI . An atom is an expression of the form B(s), ≥ nR.B(s), R(s, t), or
s ≈ t, for s and t individuals or variables, B a literal concept, R an atomic role,
and n a positive integer. A DL-clause is an expression of the form

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. The conjunction U1 ∧ . . . ∧ Um
is called the antecedent, and the disjunction V1 ∨ . . . ∨ Vn is called the consequent.
The empty antecedent and the empty consequent of a DL-clause are written as >
and ⊥, respectively.

Let I = (4I , ·I) be an interpretation and µ : NV →4I a mapping of variables
to elements of the interpretation domain. Let aI,µ = aI for an individual a and
xI,µ = µ(x) for a variable x. Satisfaction of an atom, DL-clause, and a set of DL-
clauses C in I and µ is defined in Table 2.

4.1.1 Elimination of Transitivity Axioms

Transitivity axioms are handled in the tableau algorithms by the ∀+-rule: if
R is transitive and an ABox contains ∀R.C(s) and R(s, t), the ∀+-rule derives
∀R.C(t). In our algorithm, however, concepts of the form ∀R.C are translated
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Table 2
Satisfaction of DL-Clauses in an Interpretation
I, µ |= C(s) iff sI,µ ∈ CI

I, µ |= R(s, t) iff 〈sI,µ, tI,µ〉 ∈ RI

I, µ |= s ≈ t iff sI,µ = tI,µ

I, µ |=
∧m
i=1 Ui →

∨n
j=1 Vj iff I, µ |= Ui for each 1 ≤ i ≤ m implies

I, µ |= Vj for some 1 ≤ j ≤ n
I |=

∧m
i=1 Ui →

∨n
j=1 Vj iff I, µ |=

∧m
i=1 Ui →

∨n
j=1 Vj for all mappings µ

I |= C iff I |= r for each DL-clause r ∈ C

into DL-clauses, so the ∀+-rule cannot be applied. Therefore, instead of handling
transitivity directly, we encode a SHOIQ+ knowledge base K into an equisatisfi-
able ALCHOIQ+ knowledge base Ω(K). This encoding eliminates all transitivity
axioms, but simulates their effects using additional GCIs.

Definition 2. Given a SHOIQ+ knowledge base K = (R, T ,A), the concept clo-
sure of K is the smallest set of concepts clos(K) such that

• if C v D ∈ T , then nnf(¬C tD) ∈ clos(K),

• if C(a) ∈ A, then nnf(C) ∈ clos(K),

• if C ∈ clos(K) and D syntactically occurs in C, then D ∈ clos(K),

• if ≤ nR.C ∈ clos(K), then ¬̇C ∈ clos(K), and

• if ∀R.C ∈ clos(K), S v∗R R, and Tra(S) ∈ R, then ∀S.C ∈ clos(K).

The Ω-encoding of K is theALCHOIQ+ knowledge base Ω(K) = (R′, T ′,A) where
R′ is obtained from R by removing all transitivity axioms and

T ′ = T ∪ {∀R.C v ∀S.(∀S.C) | ∀R.C ∈ clos(K), S v∗R R, and Tra(S) ∈ R}.

Similar encodings are known for various description [38] and modal [35] logics.
Note that, in order to guarantee decidability [22], number restrictions are allowed in
SHOIQ+ only on simple roles—that is, on roles not having transitive subroles; for
similar reasons, role disjointness, irreflexivity, and asymmetry axioms are allowed
only on simple roles as well. Therefore, the proof of the following lemma is quite
similar to the proofs in [38,35], so we omit it for the sake of brevity. The full
proof for the DL SHIQ can be found [28, Section 5.2], and its generalization to
SHOIQ+ is straightforward.

Lemma 3 ([28]). A SHOIQ+ knowledge base K is satisfiable if and only if Ω(K)
is satisfiable, and Ω(K) can be computed in time polynomial in |K|.

After the elimination of transitivity axioms, there is no distinction between sim-
ple and complex roles. Hence, in the rest of this paper we assume that all roles are
simple unless otherwise stated and, without loss of generality, we treat ∃R.C as a
syntactic shortcut for ≥ 1R.C.
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4.1.2 Normalization

Before a knowledge base is translated into a set of DL-clauses, it is first brought
into a normalized form. This is done in order to make all implicit negations explicit,
and to ensure that the resulting DL-clauses are compatible with blocking.

To understand the first issue, consider the axiom ¬A v ¬(∃R.∃R.∃R.B). Due to
implicit negations, converting this axiom into DL-clauses is not straightforward.
Therefore, we replace this axiom with the following equivalent axiom. This makes
all negations explicit, so the result can be easily translated into a DL-clause.

> v A t ∀R.∀R.∀R.¬B  R(x, y1) ∧R(y1, y2) ∧R(y2, y3) ∧B(y3)→ A(x)(9)

To understand the second issue, consider the knowledge base K8, consisting of
an ABox A8 and a TBox that corresponds to the set of DL-clauses C8.

A8 = { ¬A(a), B(a) }
C8 = { R(x, y1) ∧R(y1, y2) ∧R(y2, y3) ∧B(y3)→ A(x),

B(x)→ ∃R.B(x) }
(10)

By applying the rules from Section 3.2, our algorithm constructs on K8 the ABox
shown in Figure 10. As discussed in Section 3.1.2, c is now blocked by b; further-
more, no rule is applicable to the ABox, so the algorithm terminates, leading us to
believe that K8 is satisfiable. The ABox, however, does not represent a model of
K8: if we expand ∃R.B(c) into R(c, d) and B(d), by the first DL-clause in C8 we can
derive the assertion A(a), which contradicts ¬A(a). This problem arises because
the antecedent of the first DL-clause in C8 checks for a path of three R-successors,
whereas the pairwise blocking condition ensures only that all paths of length two
are fully constructed. Intuitively, the antecedents of each DL-clause should check
for paths that “fit” into the fully constructed model fragments. We can ensure this
by renaming complex concepts into simpler ones. Thus, we transform the culprit
DL-clause into the following ones, which check only for paths of length one.

> v A t ∀R.¬Q1  R(x, y) ∧Q1(y)→ A(x)(11)

> v Q1 t ∀R.¬Q2  R(x, y) ∧Q2(y)→ Q1(x)(12)

> v Q2 t ∀R.¬B  R(x, y) ∧B(y)→ Q2(x)(13)

The application of these DL-clauses to the ABox shown in Figure 10 would addi-
tionally derive Q2(a), Q2(b), and Q1(a), so c would not be blocked. The calculus
would then expand ∃R.B(c) and discover a contradiction.

To formalize these ideas, we define a normalized form of DL knowledge bases.

Definition 4 (Normalized Form). For A an atomic concept, the concepts A,
¬A, >, and ⊥ are called literal concepts. A GCI is normalized if it is of the
form > v ⊔ni=1Ci, where each Ci is of the form B, {a}, ∀R.B, ∃R.Self, ¬∃R.Self,
≥ nR.B, or ≤ nR.B, for B a literal concept, R a role, and n a nonnegative integer.

A TBox T is normalized if each GCI in it is normalized. An ABoxA is normalized
if each concept assertion in A is of the form B(a) or ≥ nR.B(a), for B a literal
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Table 3
The Functions Used in the Normalization

∆(K) = {>(a)} ∪
⋃

α∈R∪A
∆(α) ∪

⋃
C1vC2∈T

∆(> v nnf(¬C1 t C2))

∆(> v C t C ′) = ∆(> v C t αC′) ∪
⋃

1≤i≤n
∆(> v ¬̇αC′ t Ci)

for C ′ of the form C ′ = C1 u . . . u Cn and n ≥ 2
∆(> v C t ∀R.D) = ∆(> v C t ∀R.αD) ∪∆(> v ¬̇αD tD)

∆(> v C t ≥ nR.D) = ∆(> v C t ≥ nR.αD) ∪∆(> v ¬̇αD tD)
∆(> v C t ≤ nR.D) = ∆(> v C t ≤ nR.¬̇α¬̇D) ∪∆(> v ¬̇α¬̇D t ¬̇D)

∆(> v C t ¬{s}) =
{
⊥ if C is empty,
∆(C(s)) otherwise.

∆(D(s)) = {αD(s)} ∪∆(> v ¬̇αD t nnf(D))
∆(R−(s, t)) = {R(t, s)}

∆(β) = {β} for any other axiom β

αC =
{
QC if pos(C) = true
¬QC if pos(C) = false

, where QC is a fresh atomic concept unique for C

pos(>) = false pos(⊥) = false
pos(A) = true pos(¬A) = false

pos({s}) = true pos(¬{s}) = false
pos(∃R.Self) = true pos(¬∃R.Self) = false
pos(C1 u C2) = pos(C1) ∨ pos(C2) pos(C1 t C2) = pos(C1) ∨ pos(C2)
pos(∀R.C1) = pos(C1)

pos(≤ nR.C1) =
{

pos(¬̇C1) if n = 0
true otherwisepos(≥ nR.C1) = true

Note: A is an atomic concept, C(i) are arbitrary concepts, C is a possibly empty
disjunction of arbitrary concepts, D is not a literal concept, and a is a fresh individual.
Our notation takes into account that u and t are commutative; hence, the concept C ′

in a disjunction of the form C t C ′ is not necessarily the right-most disjunct.

concept, each role assertion in A contains only atomic roles, and A contains at
least one assertion. An ALCHOIQ+ knowledge base K = (R, T ,A) is normalized
if T and A are normalized.

The following transformation can be used to normalize a knowledge base.

Definition 5 (Normalization). For an ALCHOIQ+ knowledge base K, the knowl-
edge base ∆(K) is computed as shown in Table 3.
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Normalization can be seen as an optimized variant of the well-known structural
transformation [32]. An application of the structural transformation to axiom (9)
would replace each complex subconcept with a positive atomic concept, eventually
producing the axiom > v A t ∀R.Q1. This axiom cannot be translated into a Horn
DL-clause, whereas the original axiom (9) can; thus, the structural transformation
can destroy Horn-ness. To prevent this, we introduce the function pos(C) (c.f.
Table 3) that returns false if the clausification of C does not require adding atoms
into the consequent of a DL-clause. When replacing an occurrence of a concept C
in a concept D, if pos(C) = false, we replace C in D with a negative literal concept
¬QC ; otherwise, if pos(C) = true, we replace C in D with a positive literal concept
QC . If K is expressed in the DL Horn-SHIQ [25], this transformation produces
only Horn DL-clauses, thus allowing for reasoning without any nondeterminism.

The following lemma captures the important properties of normalization.

Lemma 6. An ALCHOIQ+ knowledge base K is satisfiable if and only if ∆(K)
is satisfiable. Furthermore, ∆(K) is normalized and it can be computed in time
polynomial in |K|.

PROOF. It is easy to see that our transformation is a syntactic variant of the
structural transformation from [32], so K and ∆(K) are equisatisfiable. Observe
that ∆ essentially rewrites each GCI into a form > v ⊔ni=1Ci and then keeps re-
placing nested subconcepts of Ci until the GCI becomes normalized. Furthermore,
it adds >(a) to the ABox so that the ABox is not empty, and it replaces all in-
verse role assertions with equivalent assertions on the atomic roles. Thus, ∆(K) is
normalized. Finally, each occurrence of a concept in K can be replaced with a new
atomic concept at most once, and all necessary syntactic transformations can be
performed in polynomial time, so ∆(K) can be computed in polynomial time.

4.1.3 Translation into DL-Clauses

We now introduce the notion of HT-clauses—syntactically restricted DL-clauses
on which our hypertableau calculus is guaranteed to terminate. In the rest of this
paper, we often use the following function ar. Given a role R and variables or
constants s and t, this function returns an atom that is semantically equivalent to
R(s, t) but that contains an atomic role.

ar(R, s, t) =

{
R(s, t) if R is an atomic role
S(t, s) if R is an inverse role and R = S−

Definition 7 (HT-Clause). We assume that the set of atomic conceptsNC contains
a nominal guard concept Oa for each individual a; these concepts should not occur
in any input knowledge base.

An at-most equality is an atom of the form s ≈ t@u
≤nR.B, where s, t, and u are

constants or variables, n is a nonnegative integer, R is a role, and B is a literal
concept. Semantically, this atom is equivalent to s ≈ t; the annotation @u

≤nR.B is
only used to ensure termination of the hypertableau calculus.
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An HT-clause is a DL-clause r of the form

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn(14)

in which it must be possible to separate the variables into a center variable x, a
set of branch variables yi, and a set of nominal variables zj such that the following
properties hold, for A an atomic concept, B a literal but not a nominal guard
concept, C a concept of the form B or ≥ nT.B, Oa a nominal guard concept, R
and S atomic roles, and T a role.

• Each atom in the antecedent of r is of the form A(x), R(x, x), R(x, yi), R(yi, x),
A(yi), or A(zj).

• Each atom in the consequent of r is of the form C(x), C(yi), R(x, x), R(x, yi),
R(yi, x), R(x, zj), R(zj, x), x ≈ zj, yi ≈ zj, or yi ≈ yj @x

≤nT.B.

• Each yi occurs in the antecedent of r in an atom of the form R(x, yi) or R(yi, x).

• Each zj occurs in the antecedent of r in an atom of the form Oa(zj).

• Each equality yi ≈ yj @x
≤hT.A in the consequent of r must occur in a subclause

of r of the form (15) and no yk with 1 ≤ k ≤ h+ 1 should occur elsewhere in r.

. . .
h+1∧
k=1

[ar(T, x, yk) ∧ A(yk)] . . .→ . . .
∨

1≤k<`≤h+1

yk ≈ y` @x
≤hT.A . . .(15)

• Each equality yi ≈ yj @x
≤nT.¬A in the consequent of r must occur in a subclause

of r of the form (16) and no yk with 1 ≤ k ≤ h+ 1 should occur elsewhere in r.

. . .
h+1∧
k=1

ar(T, x, yk) . . .→ . . .
h+1∨
k=1

A(yk) ∨
∨

1≤k<`≤h+1

yk ≈ y` @x
≤hT.¬A . . .(16)

The notion of HT-clauses is more general than what is strictly needed to capture
ALCHOIQ+ constructs. For example, the HT-clause R(x, y) ∧ A(y)→ S(x, y) ex-
presses a form of relativized role inclusions; furthermore, HT-clauses of the form
R(x, y) ∧ S(y, x)→ U(x, y) ∨ T (y, x) can fully capture safe role expressions [38].

We now show how to transform a normalized ALCHOIQ+ knowledge base into
a set of HT-clauses.

Definition 8 (Clausification). The clausification of a normalized ALCHOIQ+

knowledge baseK = (R, T ,A) is the pair Ξ(K) = (ΞT R(K),ΞA(K)), where ΞT R(K)
is the set of DL-clauses and ΞA(K) is the ABox defined as shown in Table 4.

By Definition 4, normalized knowledge bases do not contain negated nominal
concepts of the form ¬{a}: if present in the input knowledge base, such concepts are
converted to ABox assertions during normalization; hence, Table 4 need not handle
concepts of the form ¬{a}. Positive nominal concepts are naturally translated into
equalities containing constants; for example, > v ¬A t {a} naturally corresponds
to the DL-clause A(x)→ x ≈ a. Such clauses cause problems for the ≈-rule. For
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Table 4
Translation of a Normalized Knowledge Base to HT-Clauses

ΞT (T ) = {
n∧
i=1

lhs(Ci)→
n∨
i=1

rhs(Ci) | for each > v
n⊔
i=1

Ci in T }

ΞR(R) = {ar(R, x, y)→ ar(S, x, y) | for each R v S in R} ∪
{ar(S1, x, y) ∧ ar(S2, x, y)→ ⊥ | for each Dis(S1, S2) ∈ R} ∪
{> → ar(R, x, x) | for each Ref(R) ∈ R} ∪
{ar(S, x, x)→ ⊥ | for each Irr(S) ∈ R} ∪
{ar(R, x, y)→ ar(R, y, x) | for each Sym(R) ∈ R} ∪
{ar(S, x, y) ∧ ar(S, y, x)→ ⊥ | for each Asy(S) ∈ R}

ΞT R(K) = ΞT (T ) ∪ ΞR(R)

ΞA(K) = A ∪ {Oa(a) | for each {a} occurring in K}

Note: Whenever lhs(Ci) or rhs(Ci) is undefined, it is omitted in the DL-clause.
C lhs(C) rhs(C)
A A(x)

¬A A(x)

{a} Oa(zC) x ≈ zC
≥ nR.A ≥ nR.A(x)

≥ nR.¬A ≥ nR.¬A(x)

∃R.Self ar(R, x, x)

¬∃R.Self ar(R, x, x)

∀R.A ar(R, x, yC) A(yC)

∀R.¬A ar(R, x, yC) ∧A(yC)

≤ nR.A
n+1∧
i=1

[ar(R, x, yiC) ∧A(yiC)]
∨

1≤i<j≤n+1
yiC ≈ y

j
C @x

≤nR.A

≤ nR.¬A
n+1∧
i=1

ar(R, x, yiC)
n+1∨
i=1

A(yiC) ∨
∨

1≤i<j≤n+1
yiC ≈ y

j
C @x

≤nR.¬A

Note: Each y
(i)
C and zC is a fresh variable unique for C (and i).

example, given an equality assertion a ≈ b, the ≈-rule replaces all occurrences of
a with b. Such replacements should be performed not only in the facts, but in
the DL-clauses as well; thus, the mentioned DL-clause should be replaced with
A(x)→ x ≈ b. This has the drawback that the set of DL-clauses is not fixed in
the course of derivation. We solve this problem by “extracting” all constants into
the ABox: our clausification algorithm converts > v ¬A t {a} into the DL-clause
A(x) ∧Oa(z{a})→ x ≈ z{a} and the fact Oa(a). All constants are thus “pushed”
into the facts, so the ≈-rule can perform replacements only in the facts.

Lemma 9. Let K be a normalized ALCHIQ knowledge base. Then, K is equisat-
isfiable with Ξ(K) = (ΞT R(K),ΞA(K)), and ΞT R(K) contains only HT-clauses.
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PROOF. By inspecting Table 4, it is easy to see that ΞT R(KB) contains only
HT-clauses. The following equivalences are well known to hold [3] between DL
concepts and first-order formulae:

∀R.B(x) ≡ ∀y : ¬R(x, y) ∨B(y)
≤ nR.B(x) ≡ ∀y1, . . . , yn+1 :

∨n+1
i=1 [R(x, yi) ∧B(yi)]→

∨n+1
i=1

n+1
j=i+1 yi ≈ yj

{a}(x) ≡ x ≈ a

Let Ξ′T R(K) be the set of DL-clauses defined just like ΞT R(K), but with the differ-
ence that lhs({a}) = > and rhs({a}) = x ≈ a. Then, (Ξ′T R(K),ΞA(K)) is obtained
from K by replacing concepts of the form ∀R.B, ≤ nR.B and {a} with the equiv-
alent first-order formulae, so K and (Ξ′T R(K),ΞA(K)) are clearly equisatisfiable.

We now show that (Ξ′T R(K),ΞA(K)) is equisatisfiable with (ΞT R(K),ΞA(K)).
For the (⇒) direction, each model I ′ of (Ξ′T R(K),ΞA(K)) can be extended to a
model I of (ΞT R(K),ΞA(K)) by setting OI

a = {aI′} for each nominal guard con-
cept Oa. For the (⇐) direction, it is easy to see that each model I of Ξ(K) is a
model of (Ξ′T R(K),ΞA(K)). In particular, for each HT-clause γ ∈ Ξ′T R(K), we have
δ ∈ ΞT R(K), where γ and δ are of the form shown below.

γ =
∧
Ui →

∨
Vj ∨

∨n
k=1 xk ≈ ak  

δ =
∧
Ui ∧

∧n
k=1Oak

(z{ak})→
∨
Vj ∨

∨n
k=1 xk ≈ z{ak}

Now if the disjunction
∨n
k=1 xk ≈ ak in some γ were not true in I for some values

of xk, then clearly δ would not be true in I for the same values of xk.

4.2 The Hypertableau Calculus for HT-Clauses

We now present the hypertableau calculus for deciding satisfiability of an ABox
A and a set of HT-clauses C. In our algorithm, we call the individuals that occur in
the input ABox named. Furthermore, for a named individual a, the NI -rule might
need to introduce individuals that are unique for a, a role R, a literal concept
B, and some integer i; we represent such individuals as a.〈R,B, i〉. Since the NI -
rule might be applied to these individuals as well, we formalize the notion of root
individuals as finite strings of the form a.γ1. . . . .γn where a is a named individual
and each γ` is of the form 〈R.B.i〉.

In standard tableau algorithms, the tree structure of the model is encoded in the
edges between individuals, which always point from parents to children. In contrast,
our algorithm encodes the parent-child relationships into individuals themselves: it
represents individuals as finite strings of the form s.i1, i2, . . . , in, where s is a root
individual and ij are integers. For example, a.2 is the second child of the named
individual a. Individuals with n ≥ 1 are called blockable.

Definition 10 (Hypertableau Algorithm).

Individuals. Given a set of named individuals NI , the set of root individuals
NO is the smallest set such that NI ⊆ NO and, if x ∈ NO, then x.〈R,B, i〉 ∈ NO

for each role R, literal concept B, and integer i. The set of all individuals NA is
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the smallest set such that NO ⊆ NA and, if x ∈ NA, then x.i ∈ NA for each integer
i. The individuals in NA \NO are blockable individuals. A blockable individual x.i
is a successor of x, and x is a predecessor of x.i. Descendant and ancestor are the
transitive closures of successor and predecessor, respectively.

ABoxes. The hypertableau algorithm operates on generalized ABoxes, which
are obtained by extending the standard notion of ABoxes as follows.

• In addition to standard assertions, an ABox can contain at-most equalities and
a special assertion ⊥ that is false in all interpretations. Furthermore, assertions
can refer to the individuals from NA and not only from NI .

• Each (in)equality s ≈ t (s 6≈ t) also stands for the symmetric (in)equality t ≈ s
(t 6≈ s). The same is true for annotated at-most equalities.

• An ABox A can contain renamings of the form a 7→ b where a and b are root
individuals. The relation 7→ in A must be acyclic, A can contain at most one
renaming a 7→ b for an individual a, and, if A contains a 7→ b, then a should
not occur in any assertion or (in)equality in A. An individual b is the canonical
name of a root individual a in A, written b = ‖a‖A, iff a 7→∗ b and there exists
no individual c 6= b such that b 7→∗ c, where 7→∗ is the reflexive-transitive closure
of 7→ in A.

An ABox that contains only named individuals and no at-most equalities is
called an input ABox.

Pairwise Anywhere Blocking. ForA an atomic concept andR a role, concepts
of the form A, ≥ nR.A, or ≥ nR.¬A are called blocking-relevant. The labels of an
individual s and of an individual pair 〈s, t〉 in an ABox A are defined as follows:

LA(s) = { C | C(s) ∈ A and C is a blocking-relevant concept }
LA(s, t) = { R | R(s, t) ∈ A }

Let ≺ be a strict ordering (i.e., a transitive and irreflexive relation) on NA

containing the ancestor relation—that is, if s′ is an ancestor of s, then s′ ≺ s. By
induction on ≺, we assign to each individual s in A a status as follows:

• a blockable individual s is directly blocked by a blockable individual t iff, for s′

and t′ the predecessors of s and t, respectively, we have

· t is not blocked,

· t ≺ s,

· LA(s) = LA(t), LA(s′) = LA(t′), and LA(s, s) = LA(t, t), and

· LA(s, s′) = LA(t, t′) and LA(s′, s) = LA(t′, t);

• s is indirectly blocked iff it has a predecessor that is blocked; and

• s is blocked iff it is either directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions
containing a descendent of s.
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Merging. The ABox mergeA(s→ t) is obtained from pruneA(s) by replacing the
individual s with the individual t in all assertions and their annotations (but not
in renamings) and, if both s and t are root individuals, adding the renaming s 7→ t.

Derivation Rules. Table 5 specifies derivation rules that, given an ABox A
and a set of HT-clauses C, derive the ABoxes A1, . . . ,An. In the Hyp-rule, σ is a
mapping from the set of variables NV to the individuals occurring in the assertions
of A, and σ(U) is the result of replacing each variable x in the atom U with σ(x).

Rule Precedence. The ≈-rule can be applied to a (possibly annotated) equality
s ≈ t in an ABox A only if A does not contain an equality s ≈ t@u

≤nR.B to which
the NI -rule is applicable.

Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.

Derivation. For a set of HT-clauses C and an ABox A, a derivation is a pair
(T, λ) where T is a finitely branching tree and λ is a function that labels the nodes
of T with ABoxes such that, for each node t ∈ T , the following properties hold:

• if t the root of T , then λ(t) = A;

• if ⊥ ∈ λ(t) or no derivation rule is applicable to λ(t) and C, then t is a leaf of T ;

• otherwise, t has children t1, . . . , tn such that λ(t1), . . . , λ(tn) are exactly the re-
sults of applying one (arbitrarily chosen, but respecting the rule precedence)
applicable rule to λ(t) and C.

We stress several important aspects of Definition 10. If the preconditions of the
NI -rule are satisfied for an at-most equality s ≈ t@u

≤nR.B, then the rule must be
applied even if s = t; hence, such an equality plays a role in a derivation even
though it is a logical tautology. Furthermore, if u is not a root individual, then
the NI -rule is never applied to such an at-most equality, so the equality can be
eagerly simplified into s ≈ t. Finally, if C has been obtained by a translation of a DL
knowledge base that does not use nominals, inverse roles, or number restrictions,
then the precondition of the NI -rule will never be satisfied, so we need not keep
track of annotations at all.

We next introduce HT-ABoxes, which capture the notion of a forest-shaped
interpretation.

Definition 11 (HT-ABoxes). An ABox A is an HT-ABox if all of its assertions
satisfy the following conditions, where R is an atomic role, s, t ∈ NA, a ∈ NO, and
i and j are integers.

(1) Each role assertion in A is of the form R(a, s), R(s, a), R(s, s.i), R(s.i, s), or
R(s, s).

(2) Each equality in A either is of the form s ≈ t@a
≤nR.B with s a blockable

individual that is not a successor of a and t a blockable individual, or it is a
possibly annotated equality of the form s.i ≈ s.j, s.i ≈ s, s.i.j ≈ s, s ≈ s, or
s ≈ a. (The symmetry of ≈ applies in all these cases as usual.)

(3) If A contains Oa(s) for Oa a nominal guard concept, then s ∈ NI .
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Table 5
Derivation Rules of the Tableau Calculus

Hyp-rule

If 1. U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn ∈ C, and
2. a mapping σ from variables NV to the individuals of A exists such that
2.1 σ(x) is not indirectly blocked for each variable x ∈ NV ,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then A1 := A ∪ {⊥} if n = 0;
Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-rule

If 1. ≥ nR.C(s) ∈ A,
2. s is not blocked in A, and
3. A does not contain individuals u1, . . . , un such that
3.1 {ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A, and
3.2 either s is blockable or no ui, 1 ≤ i ≤ n, is indirectly blocked in A

then A1 := A ∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}
where t1, . . . , tn are fresh distinct successors of s.

≈-rule
If 1. s ≈ t ∈ A (the equality can possibly be annotated), and

2. s 6= t
then A1 := mergeA(s→ t) if t is a named individual, or t is a root individual

and s is not a named individual, or s is a descendant of t;
A1 := mergeA(t→ s) otherwise.

⊥-rule
If s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A
then A1 := A ∪ {⊥}.

NI -rule

If 1. s ≈ t@u
≤nR.B ∈ A (the symmetry of ≈ applies as usual),

2. u is a root individual,
3. s is a blockable individual that is not a successor of u, and
4. t is a blockable individual

then Ai := mergeA(s→ ‖u.〈R,B, i〉‖A) for each 1 ≤ i ≤ n.

(4) If A contains ≥ nR.B(s), then B is not a nominal guard concept.

(5) If A contains a blockable individual s.i in some assertion, then A must contain
an assertion of the form R(s, s.i) or R(s.i, s).

(6) A contains at least one assertion or (in)equality.

Clearly, each initial ABox is an HT-ABox. We now prove that, given an HT-
ABox, our calculus produces only HT-ABoxes.

Lemma 12 (HT-Preservation). For C a set of HT-clauses and A an HT-ABox,
each ABox A′ obtained by applying a derivation rule to C and A is an HT-ABox.

PROOF. By analyzing each derivation rule from Table 5, we show thatA′ satisfies
the conditions of HT-ABoxes.

(Hyp-rule) Consider an application of the Hyp-rule to an HT-clause r of type
(14) with a mapping σ, deriving an assertion σ(V ).

Assume that V is of the form yi ≈ yj @x
≤k R.B, so σ(V ) is of the form s ≈ t@u

≤k R.B.
By Definition 7, the antecedent of r then contains atoms of the form ar(R, x, yi) and
ar(R, x, yj) so, by the precondition of the Hyp-rule, A contains assertions ar(R, u, s)
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Table 6
Cases in Application of the Hyp-Rule to Role Assertions

ar(R, u, s) ar(R, u, t) s ≈ t@u
≤k R.B

ar(R, v, a) ar(R, v, b) a ≈ b@v
≤k R.B

ar(R, v, a) ar(R, v, v.n) a ≈ v.n@v
≤k R.B

ar(R, v, a) ar(R, v, v) a ≈ v@v
≤k R.B

ar(R, v.n, a) ar(R, v.n, v) a ≈ v@v.n
≤k R.B

ar(R, v, v.m) ar(R, v, v.n) v.m ≈ v.n@v
≤k R.B

ar(R, v, v.m) ar(R, v, v) v.m ≈ v@v
≤k R.B

ar(R, v.n, v.n.m) ar(R, v.n, v) v.n.m ≈ v@v.n
≤k R.B

ar(R, v, v) ar(R, v, v) v ≈ v@v
≤k R.B

ar(R, v.n, v.n) ar(R, v.n, v) v.n ≈ v@v.n
≤k R.B

ar(R, v.n, v) ar(R, v.n, v) v ≈ v@v.n
≤k R.B

and ar(R, u, t). If u is a root individual and either s or t is a blockable individual
that is not a successor of u, then σ(V ) clearly satisfies Property (2) of HT-ABoxes.
Otherwise, since A satisfies Property (1) of HT-ABoxes, we have these possibilities
shown in Table 6, for v a blockable individual, and a and b root individuals. For
brevity, we omit the symmetric combinations where the roles of ar(R, u, s) and
ar(R, u, t) are exchanged. Clearly, σ(V ) satisfies Property (2) of HT-ABoxes.

Assume that V is of the form x ≈ zj, so σ(V ) is of the form s ≈ t. By Definition
7, the antecedent of r then contains an atom Oa(zj), so either Oa(s) ∈ A or
Oa(t) ∈ A. By Property (3) of HT-ABoxes, either s or t is a named individual, so
σ(V ) satisfies Property (2) of HT-ABoxes.

Assume that V is of the form R(x, x). Then, σ(V ) is of the form R(s, s), and it
satisfies Property (1) of HT-ABoxes.

Assume that V is of the form R(x, yi) or R(yi, x), so σ(V ) is of the form R(s, t).
By Definition 7, the antecedent of r then contains an atom of the form S(x, yi) or
S(yi, x), and either S(s, t) ∈ A or S(t, s) ∈ A; these assertions satisfy Property (1)
of HT-ABoxes, so R(s, t) satisfies it as well.

Assume that V is of the form R(x, zj) or R(zj, x), so σ(V ) is of the form R(s, t).
By Definition 7, the antecedent of r then contains an atom of the form Oa(zj) for
Oa a nominal guard concept, and either Oa(s) ∈ A or Oa(t) ∈ A; by Property (3)
of HT-ABoxes, either s or t is a named individual, so R(s, t) satisfies Property (1)
of HT-ABoxes.

Assume that V is of the form C(x) of C(yi), so σ(V ) is of the form C(s). By
Definition 7, C is for the form B or ≥ nS.B, for B a literal but not a nominal
guard concept. Clearly, σ(V ) satisfies Property (3) of HT-ABoxes.

(≥-rule) Consider an application of the ≥-rule to an assertion ≥ nR.C(s). By
Property (4) of HT-ABoxes, C is not a nominal guard concept, so all assertions
C(ti) introduced by the rule satisfy Property (3) of HT-ABoxes. Furthermore, all
ti introduced by the rule are fresh blockable successors of s, and all role assertions
introduced by the rule are of the form R(s, ti) or R(ti, s), so they satisfy Properties
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Table 7
Cases in Application of the ≈-Rule to Role Assertions

R(s, u) s ≈ t R(t, u)
R(v.i, v) v.i ≈ v.j R(v.j, v)
R(v.i, v) v.i ≈ v R(v, v)
R(t.j.i, t.j) t.j.i ≈ t R(t, t.j)
R(v.i, v.i) v.i ≈ v.j R(v.j, v.j)
R(v.i, v.i) v.i ≈ v R(v, v)
R(t.j.i, t.j.i) t.j.i ≈ t R(t, t)

(1) and (5) of HT-ABoxes. The inequalities introduced by the rule satisfy the
properties of HT-ABoxes vacuously.

(≈-rule) Consider an application of the ≈-rule to a possibly annotated equality
s ≈ t, where s is merged into t (the annotation of this equality plays no role in the
rule application). By the conditions on the 7→ relation of A, the ABox A contains
no renaming for s or t, so the renaming s 7→ t is the only renaming for s in A′, and
adding this renaming to A does not introduce a cycle in 7→. Merging replaces all
occurrences of s in A, so no assertion or (in)equality of A′ contains s. Hence, A′
satisfies the conditions on the 7→ relation.

The NI -rule is not applicable to s ≈ t by the rule precedence, so s ≈ t can be of
the form v ≈ a, v.i ≈ v.j, v.i ≈ v, or v.i.j ≈ v for a ∈ NO and v ∈ NA; we denote
this property with (*). Pruning removes all successors of s, so A′ satisfies Property
(5) of HT-ABoxes. We next consider the types of assertions of A that change when
s is merged into t.

Consider a role assertion R(s, u) ∈ A that is changed into R(t, u) ∈ A′. If either
t or u is a root individual, then R(t, u) clearly satisfies Property (1) of HT-ABoxes,
so assume that t and u are both blockable individuals. Then, u is not a successor
of s, since the ≈-rule prunes all assertions that contain a descendant of the merged
individual. But then, since R(s, u) satisfies Property (1) of HT-ABoxes and by (*),
we have the possibilities shown in Table 7. The cases when R(u, s) ∈ A is changed
by merging into R(u, t) ∈ A′ are analogous, so we can conclude that R(u, t) satisfies
Property (1) of HT-ABoxes.

For a a root individual, s ≈ u@a
≤nR.C can be changed into t ≈ u@a

≤nR.C , and
s ≈ a can be changed into t ≈ a. In both cases, the resulting equality satisfies
Property (2) of HT-ABoxes. For the remaining cases, assume that a possibly an-
notated equality s ≈ u is changed into a possibly annotated equality t ≈ u. If s is
a root individual, then t and u are root individuals, so t ≈ u satisfies Property (2)
of HT-ABoxes. Assume that s is a blockable individual. Since the ≈-rule prunes all
assertions that contain a descendant of the merged individual, u is not a successor
of s. By (*), Property (2) of HT-ABoxes, and the fact that the NI -rule is not ap-
plicable to A, we have the possibilities shown in Table 8. In all cases, the resulting
assertion satisfies Property (2) of HT-ABoxes. Furthermore, replacing s with t in
s ≈ t ∈ A results in t ≈ t ∈ A′, so A′ satisfies Property (6) of HT-ABoxes.
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Table 8
Cases in Application of the ≈-Rule to Equalities

s ≈ u s ≈ t t ≈ u
v.i ≈ v.k v.i ≈ v.j v.j ≈ v.k
v.i ≈ v v.i ≈ v.j v.j ≈ v
u.k.i ≈ u u.k.i ≈ u.k.j u.k.j ≈ u
v.i ≈ v.k v.i ≈ v v ≈ v.k
v.i ≈ v v.i ≈ v v ≈ v
u.k.i ≈ u u.k.i ≈ u.k u.k ≈ u
t.j.i ≈ t.j.k t.j.i ≈ t t ≈ t.j.k
t.j.i ≈ t.j t.j.i ≈ t t.j ≈ t
t.j.i ≈ t t.j.i ≈ t t ≈ t

Consider an assertion C(s) ∈ A that is changed into C(t) ∈ A′. If C is a nominal
guard concept Oa, then s is a named individual by Property (3) of HT-ABoxes.
The ≈-rule replaces named individuals only with other named individuals, so t is
a named individual as well. Thus, C(t) satisfies Property (3) of HT-ABoxes.

(NI -rule) Consider an application of the NI -rule to an equality s ≈ t@u
≤nR.B that

merges s into a root individual ‖s.〈R,B, i〉‖A. The individual s is blockable, so no
renaming is added to A and A′ satisfies the conditions on the 7→ relation. Since s is
replaced by a root individual in role and equality assertions, all resulting assertions
satisfy Properties (1) and (2) of HT-ABoxes. Since s is not a named individual, no
assertion involving a nominal guard concept is affected by merging, so A′ satisfies
Property (3). Pruning removes all successors of s, so A′ satisfies Property (5) of
HT-ABoxes. Finally, A′ is clearly not empty, so it satisfies Property (6).

If C does not contain atoms of the form R(x, x)—that is, if C has been ob-
tained from a SHOIQ knowledge base—the proof of Lemma 12 reveals that Def-
inition 11 need not allow for assertions of the forms R(s, s) and s.i ≈ s. This,
in turn, allows us to drop the requirement that LA(s, s) = LA(t, t) in the pair-
wise blocking condition from Definition 10: if s and t are blockable individuals,
then LA′(s, s) = LA′(t, t) = ∅ for any ABox A′ obtained from A and C. Thus, the
blocking condition in such cases is the same as in [21,23,30].

We next prove soundness and completeness of our calculus. We use these notions
as it is customary in resolution-based theorem proving: a calculus is sound if it is
possible to apply its inference such that the satisfiability of a theory is preserved;
furthermore, it is complete if, whenever the calculus terminates without detecting
a contradiction, the theory is indeed satisfiable.

Lemma 13 (Soundness). Let C be a set of HT-clauses and A an input ABox such
that (C,A) is satisfiable. Then, each derivation for C and A contains a leaf node t
such that λ(t) is clash-free.

PROOF. We say that a model I of an ABox A0 is NI-compatible with A0 if the
following conditions are satisfied:
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• For each root individual a occurring in A0, we have

· aI = (‖a‖A0)
I , and

· aI ∈ (≤ nR.B)I , 〈aI , α〉 ∈ RI , and α ∈ BI for some α ∈ 4I , some role R, and
some literal concept B imply α = (a.〈R,B, i〉)I for some 1 ≤ i ≤ n.

• If s ≈ t@u
≤nR.B ∈ A0, then we have 〈uI , sI〉 ∈ RI , 〈uI , tI〉 ∈ RI , sI ∈ BI , tI ∈ BI ,

and uI ∈ (≤ nR.B)I .

To prove this lemma, we first show the following property (*): if (C,A0) is sat-
isfiable in a model that is NI -compatible with A0 and A1, . . . ,An are ABoxes
obtained by applying a derivation rule to C and A0, then some (C,Ai) is satisfiable
in a model that is NI -compatible with Ai. Let I be a model of (C,A0) that is
NI -compatible with A0 and consider all possible derivation rules that can derive
A1, . . . ,An from A0 and C.

(Hyp-rule) Consider an application of the Hyp-rule to an HT-clause of the form
(14). Since σ(Ui) ∈ A0, we have I |= σ(Ui) for all 1 ≤ i ≤ m. But then, I |= σ(Vj)
for some 1 ≤ j ≤ n. Since Aj := A0 ∪ {σ(Vj)}, we have I |= (C,Aj).

If I |= σ(Vj) for some atom Vj not of the form ψ = yk ≈ y` @x
≤hR.B, then I is

clearly NI -compatible with Aj. Furthermore, for each Vj of the form ψ, clearly
〈σ(x)I , σ(yk)

I〉 ∈ RI , 〈σ(x)I , σ(y`)
I〉 ∈ RI , σ(yk)

I ∈ BI , and σ(y`)
I ∈ BI . We de-

note these two properties with (**).

Assume that I is not NI -compatible with Aj for each 1 ≤ j ≤ n. By (**), then
I 6|= σ(Vj) for each Vj not of the form ψ, and σ(x)I 6∈ (≤ hR.B)I for each Vj of
the form ψ. Let µ : NV →4I be a variable mapping such that µ(x) = σ(x)I and
µ(yk) = σ(yk)

I for each branch variable yk not occurring in an atom of the form ψ;
furthermore, for each set of branch variables y1, . . . , yh+1 occurring in an atom of
the form ψ, we set µ(y1), . . . , µ(yh+1) to arbitrarily chosen domain elements that
verify σ(x)I 6∈ (≤ hR.B)I . Clearly, I, µ 6|= Vj for each Vj not occurring in a subset
(15) or (16) of r; furthermore, by the definition of µ, we have that I, µ 6|= Vj for each
Vj occurring in a subset of (15) or (16) of r. But then, we conclude I, µ 6|= (C,A0),
which is a contradiction.

(≥-rule) Since ≥ nR.C(s) ∈ A0, we have I |= ≥ nR.C(s), so domain elements
α1, . . . , αn ∈ 4I exist where 〈sI , αi〉 ∈ RI and αi ∈ CI for 1 ≤ i ≤ n, and αi 6= αj
for 1 ≤ i < j ≤ n. Let I ′ be an interpretation obtained from I by setting tI

′
i = αi.

Clearly, I ′ |= ar(R, s, ti), I
′ |= C(ti), and I ′ |= ti 6≈ tj for i 6= j, so I ′ |= (C,A1). The

individuals ti are not root individuals, so I ′ is NI -compatible with A1.

(≈-rule) Assume that the ≈-rule is applied to the assertion s ≈ t ∈ A0 and s
is merged into t. Since I |= s ≈ t, we have sI = tI . Pruning removes assertions, so
I is a model of the pruned ABox by monotonicity. Merging simply replaces an
individual with a synonym, so I |= (C,A1). Furthermore, ‖s‖A1 = t, so I is NI -
compatible with A1.

(⊥-rule) This rule is never applicable if (C,A0) is satisfiable.

(NI -rule) Assume that the NI -rule is applied to some s ≈ t@u
≤nR.B ∈ A0 and

s is merged into a root individual. Since I is NI -compatible with A0, we have
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uI ∈ (≤ nR.B)I , 〈uI , sI〉 ∈ RI , sI ∈ BI , and sI = (u.〈R,B, i〉)I for some 1 ≤ i ≤ n.
Let vi = ‖u.〈R,B, i〉‖A0 ; since I is NI -compatible, we have (u.〈R,B, i〉)I = vIi .
Thus, the NI -rule replaces s by its synonym vi, so I |= (C,Ai) just like in the
case of the ≈-rule. If vi does not occur in A0, the interpretation I may not be
NI -compatible with Ai because it does not interpret vi.〈S,C, `〉 correctly. We then
extend I to I ′ as follows. For each m, S, and C such that vi ∈ (≤ mS.C)I , let
α1, . . . , αk be the elements of 4I such that 〈vIi , αj〉 ∈ SI and αj ∈ CI ; clearly,
k ≤ m. We then set (vi.〈S,C, `〉)I

′
= α` for 1 ≤ ` ≤ k. Since none of vi.〈S,C, `〉

occurs in Ai, we have I ′ |= (C,Ai), so I ′ is NI -compatible with Aj.
This completes the proof of (*). To prove the main claim of this lemma, let A

be an input ABox. Similarly as for the NI -rule in the proof of (*), we can extend
I to a model I ′ of (C,A). Since A does not contain at-most equalities, I ′ is NI -
compatible with A. The claim of this lemma then follows by a straightforward
inductive application of (*).

Lemma 14 (Completeness). If a derivation for a set of HT-clauses C and an ABox
A exists in which some leaf node is labeled with a clash-free ABox A′, then (C,A)
is satisfiable.

PROOF. We prove the lemma by unraveling A′ into a model of (C,A). To enable
this, we first define several useful notions.

A path is a finite sequences of pairs of individuals of the form p = [x0

x′0
, . . . , xn

x′n
].

Let tail(p) = xn, tail′(p) = x′n, and let q = [p | xn+1

x′n+1
] be the path [x0

x′0
, . . . , xn

x′n
, xn+1

x′n+1
];

we say that q is a successor of p, and p is a predecessor of q. The set of all paths
P(A′) is defined inductively as follows:

• [a
a
] ∈ P(A′) for each root individual a occurring in A′;

• [p | s′
s′

] ∈ P(A′) if p ∈ P(A′), s′ is a successor of tail(p), s′ occurs in A′, and s′ is
not blocked in A′; and

• [p | s
s′

] ∈ P(A′) if p ∈ P(A′), s′ is a successor of tail(p), s′ occurs in A′, and s′ is
directly blocked in A′ by s.

By the definition of blocking, the following three properties (*) hold for each path
p ∈ P(A′): C(tail(p)) ∈ A′ if and only if C(tail′(p)) ∈ A′ for a blocking-relevant
concept C; R(tail(p), tail(p)) ∈ A′ if and only R(tail′(p), tail′(p)) ∈ A′ for an atomic
role R; and tail(p) is not blocked.
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Let I be the interpretation constructed as follows.

4I = P(A′)
aI = [a

a
] for each root individual a that occurs in A′

aI = bI if a 6= b and ‖a‖A′ = b

AI = {p | A(tail(p)) ∈ A′}
RI = {〈[a

a
], p〉 | a is a root individual and R(a, tail(p)) ∈ A′} ∪

{〈p, [a
a
]〉 | a is a root individual and R(tail(p), a) ∈ A′} ∪

{〈p, [p | s
s′

]〉 | R(tail(p), s′) ∈ A′} ∪
{〈[p | s

s′
], p〉 | R(s′, tail(p)) ∈ A′} ∪

{〈p, p〉 | R(tail(p), tail(p)) ∈ A′}

A′ is an HT-ABox, so 4I is not empty. We now show that, for each ps = [qs | ss′ ]
and pt = [qt | tt′ ] from 4I , the following claims hold (**):

• If s′ ≈ t′ ∈ A′, then s′ = t′: Immediate, since the ≈-rule is not applicable to A′.
This property holds even if s′ ≈ t′ is annotated.

• If s′ 6≈ t′ ∈ A′, then ps 6= pt: Since ⊥ 6∈ A′ and the ⊥-rule is not applicable to
s′ 6≈ t′, we have s′ 6= t′, which implies ps 6= pt.

• If A(s′) ∈ A′, then ps ∈ AI : By (*), we have A(s) ∈ A′, so ps ∈ AI .
• If ¬A(s′) ∈ A′, then ps 6∈ AI . Since ⊥ 6∈ A′ and the ⊥-rule is not applicable to
¬A(s′), we have A(s′) 6∈ A′. By (*), this implies A(s) 6∈ A′, so ps 6∈ AI .
• If ≥ nR.C(s′) ∈ A′, then ps ∈ (≥ nR.C)I : By (*), ≥ nR.C(s) ∈ A′ and s is not

blocked. The ≥-rule is not applicable to ≥ nR.C(s), so individuals u1, . . . , un
exist such that ar(R, s, ui) ∈ A′ and C(ui) ∈ A′ for 1 ≤ i ≤ n, and ui 6≈ uj ∈ A′
for 1 ≤ i < j ≤ n. Each assertion ar(R, s, ui) satisfies Property (1) of HT-ABoxes,
so each ui can be of one of the following forms.

· ui = s. In this case, let pui
= ps.

· ui is a successor of s. If ui is directly blocked by vi, let pui
= [ps | vi

ui
]; otherwise,

let pui
= [ps | ui

ui
].

· ui is a predecessor of s. Let pui
= qs. If tail′(pui

) 6= ui, this is because s′ is
blocked, but then, by the conditions of blocking, we have C(tail′(pui

)) ∈ A′
and ar(R, s′, tail′(pui

)) ∈ A′.
· ui and s do not satisfy any of the previous three conditions. If s is a blockable

individual, then ui is a root individual, so let pui
= [ui

ui
]. If s is a root individual,

then ui is not indirectly blocked in A′ by Condition 3.2 of the ≥-rule; but then,
none of the ancestors of ui are blocked in A′, so we can choose some pui

∈ 4I

of the form pui
= [p | ui

ui
] for some path p.

In all these cases, we have ar(R, s′, tail′(pui
)) ∈ A′, which implies 〈ps, pui

〉 ∈ RI ,
and C(tail′(pui

)) ∈ A′, which implies pui
∈ CI . Consider now each pair of paths

pui
and puj

with i 6= j. If tail′(pui
) 6≈ tail′(puj

) ∈ A′, then clearly pui
6= puj

holds.
Furthermore, if tail′(pui

) 6≈ tail′(puj
) /∈ A′, this is because tail′(pui

) 6= ui, which is
possible only if s′ is directly blocked by s and ui is a predecessor of s. Since s can
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have at most one predecessor, no uj with j 6= i is a predecessor of s, so pui
6= puj

.
Thus, we conclude that ps ∈ (≥ nR.C)I .

Clearly, (**) implies that I |= α′ for each assertion α′ ∈ A′ that contains only
named individuals. Consider now each α ∈ A. If α 6∈ A′, then A′ contains renam-
ings that, when applied to α, produce an assertion α′ ∈ A′. But then I |= α by the
definition of I.

It remains to be shown that I |= C. Consider each HT-clause r ∈ C containing
atoms of the form Ai(x), Uk(x, x), ar(Ri, x, yi), Bi(yi), and Cj(zj) in the antecedent.
Furthermore, consider a variable mapping µ such that the antecedent of r is true in
I and µ—that is, px ∈ AIi , 〈px, px〉 ∈ U I

k , 〈px, pyi
〉 ∈ RI

i , pyi
∈ BI

i , and pzj
∈ CI

j for
px = µ(x), pyi

= µ(yi), and pzj
= µ(zj). Let s = tail(px), s

′ = tail′(px), t
′
i = tail′(pyi

).
By the definition of I, we have Ai(s) ∈ A′ and Uk(s, s) ∈ A′. We define ti as follows.

• If t′i is a blocked successor of s, let ti = t′i. By the definition of I, we have
Bi(ti) ∈ A′ and ar(Ri, s, ti) ∈ A′.
• If s′ is blocked and t′i is the predecessor of s′, let ti be the predecessor of s.

Such ti exists since s blocks s′ and therefore s is blockable. By the definition of
I, we have Bi(t

′
i) ∈ A′ and ar(Ri, s

′, t′i) ∈ A′; furthermore, by the definition of
blocking, we have Bi(ti) ∈ A′ and ar(Ri, s, ti) ∈ A′.
• Otherwise, let ti = tail(pyi

). By the definition of I, we have Bi(ti) ∈ A′ and
ar(Ri, s, ti) ∈ A′.

By Definition 7, the antecedent of r contains an atom of the form Oa(zj) for each
nominal variable zj. Thus, by the definition of I and Property (3) of HT-Bboxes,
we have pzj

is of the form [uj

uj
] for uj a named individual; furthermore, Cj(uj) ∈ A′.

Let σ be a mapping such that σ(x) = s, σ(yi) = ti, and σ(zj) = uj. Clearly,
neither s nor ti are indirectly blocked. The Hyp-rule is not applicable to r, A′, and
σ, so r contains an atom Vi in the consequent such that σ(Vi) ∈ A′. Depending on
the type of Vi, we have the following possibilities.

Assume that Vi is of the form yi ≈ yj @x
≤k S.B, so ti ≈ tj @s

≤k S.B ∈ A′. By (**),
we have ti = tj. By Definition 7, r contains a subclause of the form (15) or (16), so
the antecedent of r contains atoms ar(S, x, yi) and ar(S, x, yj); therefore, we have
〈px, pyi

〉 ∈ SI and 〈px, pyj
〉 ∈ SI . The NI -rule is not applicable to ti ≈ tj @s

≤k S.B so,
if s is a root individual, then ti is either a root individual or a successor of s. Thus,
by Property (1) of HT-ABoxes, we have these possibilities: ti is a root individual,
ti = s, ti is a predecessor of s, or ti is a successor of s. If ti is a root individual
or if ti = s, then ti = tj clearly implies pyi

= pyj
. The paths pyi

and pyj
can be

both successors of px, but again, ti = tj implies pyi
= pyj

. The paths pyi
and pyj

can be both predecessors of px; but then pyi
= pyj

since px can have at most one
predecessor. Assume that pyi

is a predecessor, but pyj
is a successor of px; since ti

is not blocked, it must be that ti 6= tj, which is a contradiction. Thus, I, µ |= r.

Assume that Vi is an equality of the form x ≈ zj, so s ≈ uj ∈ A. By (**), we
have s = uj; since uj is a named individual, this implies px = pzj

, so I, µ |= r.
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Assume that Vi is of the form Di(x), Ei(yi), or Ri(x, x), so we have Di(s) ∈ A′,
Ei(ti) ∈ A′, or Ri(s, s) ∈ A′. By the definition of blocking, we have Di(s

′) ∈ A′,
Ei(t

′
i) ∈ A′, or Ri(s

′, s′) ∈ A′. Finally, by (**) and the definition of I, we have
ps ∈ DI

i , pyi
∈ EI

i , or 〈px, px〉 ∈ RI
i , so I, µ |= r.

Assume that Vi is of the form ar(Si, x, yi), so ar(Si, s, ti) ∈ A′. By the defini-
tion of blocking, we have ar(Si, s

′, t′i) ∈ A′. Finally, by the definition of I, we have
〈px, pyi

〉 ∈ SIi , so I, µ |= r.

Assume that Vi is of the form ar(Sj, x, zj), so ar(Sj, s, uj) ∈ A′. Since uj is a
named individual, by the definition of I we have 〈px, pzj

〉 ∈ SIj , so I, µ |= r.

We next prove termination of our calculus.

Lemma 15 (Termination). For a set of HT-clauses C and an ABox A, let |C,A|
be the sum of the size of A, the number of concepts and roles in C, and the num-
bers occurring in C in atoms of the form ≥ nR.B and yi ≈ yj @x

≤nR.B. Then, the
total number of individuals introduced on each derivation path is at most doubly
exponential in |C,A|; furthermore, each derivation is finite.

PROOF. We prove the claim by showing that (i) each individual can participate
in at most exponentially many rule applications, and (ii) the number of new in-
dividuals introduced on each path of a derivation is at most doubly exponential
in |C,A|. The supply of blockable individuals is infinite, so we can assume that no
blockable individual is introduced twice on a derivation path. Furthermore, if the
root individual s is removed from an ABox A′ due to merging, then a renaming
is added to A′ that ensures that ‖s‖A′ 6= s. Once a renaming is added to A′, all
ABoxes occurring below A′ in a derivation will contain this renaming as well, so
no subsequent application of the NI -rule can reintroduce s.

Next, we prove (i)—that is, that each derivation rule can be applied at most an
exponential number of times to a fixed set of individuals in a derivation path—by
considering each derivation rule.

• An application of the Hyp-rule to an HT-clause r of the form (14) and a map-
ping σ introduces an assertion σ(Vi), which prevents a subsequent reapplication
of the Hyp-rule to the same r and σ. Merging and pruning can remove σ(Vi) in
subsequent derivation steps, but such an inference also removes at least one indi-
vidual occurring in σ, preventing the reuse of the same σ in a future application
of the Hyp-rule.

• An application of the ≥-rule to an assertion ≥ nR.C(s) introduces t1, . . . , tn
as fresh successors of s and the assertions C(ti), ar(R, s, ti), and ti 6≈ tj for
1 ≤ i < j ≤ n. Thus, the individuals u1, . . . , un from the Condition 3 of the ≥-
rule can be matched to t1, . . . , tn. Furthermore, if s is not blockable, then it is a
root individual, so none of ti can become indirectly blocked and Condition 3.2
is always satisfied for ti. If some ti is merged into another individual v, then
C(v), ar(R, s, v), and v 6≈ tj are added to the ABox, so the ABox still contains
individuals that can be matched to Condition 3 of the ≥-rule.
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• An application of the ≈-rule to s ≈ t removes either s or t, so the rule cannot
be reapplied to the same s and t

• An application of the ⊥-rule produces an ABox that labels a derivation leaf.

• An application of the NI -rule to an equality s ≈ t@u
≤nR.B removes s, so the rule

cannot be reapplied to the same ≤ nR.B, s and u.

Next, we prove (ii)—that is, that the total number of individuals introduced
on a derivation path is at most doubly exponential in |C,A|. A path of length n
between individuals s and t in an ABoxA′ is a sequence of individuals u0, u1, . . . , un
such that u0 = s, un = t, and, for each 0 ≤ i ≤ n− 1, either R(ui, ui+1) ∈ A′ or
R(ui+1, ui) ∈ A′ for some atomic role R.

A root path for a root individual t in an ABox A′ is a path between t and a
named individual s such that all intermediate individuals ui, 1 ≤ i ≤ n − 1, are
root individuals. The level lev(t) of t is the length of the shortest root path for t.

The depth dep(t) of an individual t is the number of the ancestors of t; thus,
the depth of each root individual is 0. Due to Property (5) of HT-ABoxes, if an
individual t occurs in an ABox A′, then A′ contains a path of length dep(t) between
a root individual s and t such that all intermediate individuals ui, 1 ≤ i ≤ n− 1,
are all the ancestors of t.

We now show that the maximum level of a root individual and the maximum
depth of every individual are both at most exponential in the size of C and A.

We first note that an application of an inference rule never increases the level
of an individual. This is because a named individual is never pruned and can be
merged only into other named individuals, 6 and a root individual can be merged
only into another root individual. Such rule applications can make a root path only
shorter, and not longer.

Let m be the number of concepts and n the number of atomic roles that occur in
A and C, let γ = 22m+3n + 1, and let A′ be an ABox labeling a node of a derivation
for A and C. We next show that (1) dep(t) ≤ γ for each individual t occurring in
A′, and (2) if t is a root individual, then lev(t) ≤ γ.

(Claim 1) For a pair of individuals s and t occurring in A′, there are 2m differ-
ent labels LA′(s) and 2n different labels LA′(s, t). Thus, if A′ contains at least
γ = 2m · 2m · 2n · 2n · 2n + 1 predecessor-successor pairs of blockable individuals,
then A′ must contain two pairs 〈s, s.i〉 and 〈t, t.j〉 such that the following con-
ditions are satisfied:

LA′(s.i) = LA′(t.j) LA′(s) = LA′(t) LA′(s.i, s.i) = LA′(t.j, t.j)
LA′(s, s.i) = LA′(t, t.j) LA′(s.i, s) = LA′(t.j, t)

Since ≺ contains the descendant relation, a path in A′ containing γ blockable
individuals must include at least one blocked individual, so a blockable individual

6 If a derivation rule replaced a named individual with an individual that is not named,
the levels of other root individuals could increase.
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of depth γ must be blocked. The ≥-rule is applied only to individuals that are not
blocked, so the rule cannot introduce an individual u such that dep(u) > γ.

(Claim 2) We say that an individual s is a neighbor of an individual t in an
ABox A′ if s and t occur in A′ in an assertion of the form R(s, t), R(t, s), s ≈ t, or
t ≈ u@s

≤nR.B, s ≈ u@t
≤nR.B (the symmetry of ≈ applies as usual). We now prove

the stronger claim (*): if a root individual s has a blockable neighbor t in A′ that is
not a successor of s, then lev(s) + dep(t) ≤ γ, and, if s has no blockable neighbors,
then lev(s) ≤ γ. This is clearly true for the ABoxA labeling the root of a derivation,
which contains only named individuals. We now assume that (*) holds for some
ABox A′ and consider all possible derivation rules that can be applied to A′.

• Assume that the Hyp-rule derives an assertion R(s, t) or R(t, s), where s is a root
individual and t is a blockable neighbor but not a successor of s. Let R(x, y) or
R(y, x) be the atom from the consequent of an HT-clause r that is instantiated
by the inference rule. Then, the antecedent of r contains either an atom of the
form S(x, y) or S(y, x) that is matched to an assertion of the form S(s, t) or
S(t, s) in A′, or an atom of the form Oa(x) or Oa(y) that is matched to an
assertion of the form Oa(s). In the first case, since A′ satisfies (*), the resulting
ABox satisfies (*) as well. In the second case, dep(t) ≤ γ and lev(s) = 0, so the
resulting ABox satisfies (*) as well.

• Assume that the Hyp-rule derives an assertion t ≈ u@s
≤nR.C or s ≈ u@t

≤nR.C ,
where s is a root individual and t is a blockable neighbor but not a successor
of s. By Definition 7, the antecedent of the HT-clause then contain an atom of
the form ar(R, x, yi) that is matched to an assertion ar(R, s, t) or ar(R, t, s). But
then, since A′ satisfies (*), the resulting ABox satisfies (*) as well.

• If the Hyp-rule derives an assertion s ≈ t where s is a root individual and t is
a blockable neighbor but not a successor of s, the only remaining possibility
is that the consequent of the HT-clause then contains the equality x ≈ zj or
yi ≈ zj. By Definition 7, the antecedent then contains Oa(zj) that is matched to
an assertionOa(s) where s is a named individual. SinceA′ satisfies (*), dep(t) ≤ γ
and lev(s) = 0, so the resulting ABox satisfies (*) as well.

• Assume that ≥-rule introduces a new blockable neighbor t of a root individual
s. Then, t is a successor of s, and so the resulting ABox satisfies (*). In all other
cases, the rule introduces a successor of a blockable individual, so the resulting
ABox satisfies (*) trivially.

• We consider the types of equalities to with the ≈-rule can be applied in A′.
· u.i ≈ u.j: Then dep(u.i) = dep(u.j), so merging u.i into u.j does not change

the depth of a blockable neighbor t of a root individual s.

· u.i ≈ u: Then u.i is merged into u, so a root individual s that is a neighbor of
u.i can become a neighbor of the individual u, which has lower depth.

· u.i.j ≈ u: Then u.i.j is merged into u, so a root individual s that is a neighbor
of u.i.j can become a neighbor of the individual u, which has lower depth.

· u ≈ a for a a root individual: Then all successors of u are pruned and u is
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merged into b. Since A′ satisfies (*), we have lev(u) + dep(a) ≤ γ. Hence, a can
acquire a blockable predecessor v of u as neighbor. Since dep(v) = dep(u)− 1,
we have lev(a) + dep(v) ≤ γ.

· a ≈ b for a and b a root individuals: If a is merged into b, the level of b after
merging is the minimum level of a and b before merging. Hence, (*) holds in
the resulting ABox for b and each blockable neighbor t inherited from a.

• An application of the ⊥-rule trivially preserves (*).

• Assume that the NI -rule is applied to an assertion s ≈ t@u
≤nR.B such that

s = w.i and u 6= w. Then, the individual w.i is merged into a root individual
v = ‖u.〈R,B, i〉‖A′ . Thus, the root individual v acquires u as a neighbor, and
lev(v) ≤ lev(u) + 1. Furthermore, v acquires w as a neighbor; since w.i is a neigh-
bor but not a successor of u, we have lev(u) + dep(w.i) ≤ γ by the assumption.
Finally, since dep(w) = dep(w.i)− 1, we have lev(v) + dep(w) ≤ γ.

We now complete the proof of claim (ii)—that is, that the total number of
individuals introduced by derivation rules is at most doubly exponential in |C,A|.

All named individuals are of level 0 and are never introduced by the derivation
rules. An application of the NI -rule to a root individual u of level ` can introduce
at most n root individuals of level ` + 1 for each concept ≤ nR.B that occurs in
C. Thus, for each named individual, the derivation rules can create a tree of root
individuals. The maximum depth of the tree is γ, which is exponential in A and C.
Furthermore, the maximum branching factor b is equal to the sum of all numbers
occurring in C in atoms of the form yi ≈ yj @x

≤nR.B. If numbers are coded in binary,
then b is exponential in |C,A|, so each such tree is doubly exponential in |C,A|.

Similarly, each root individual can become root of a tree of blockable individuals
of depth γ. Each blockable individual is introduced by applying the ≥-rule to its
predecessor. Furthermore, the ≥-rule can be applied to an individual s at most
once for each concept of the form ≥ nR.B. Thus, the branching factor is expo-
nential assuming binary coding of numbers, and each such tree is at most doubly
exponential in |C,A|.

Thus, the total number of individuals appearing in a derivation is at most doubly
exponential in |C,A|. Since the branching factor in the derivation is exponentially
bounded by |C,A|, each derivation is finite.

We now state the main theorem of this section.

Theorem 16. Checking whether a SHOIQ+ knowledge base K is satisfiable can be
performed by computing K′ = ∆(Ω(K)) and then checking whether some derivation
for Ξ(K′) contains a leaf node labeled with a clash-free ABox. Furthermore, such
an algorithm can be implemented in 2NExpTime in |K|.

PROOF. The first part of the theorem follows immediately from Lemmas 3, 6,
13, and 14. By Lemma 15, the total number of individuals is doubly exponential
in |ΞA(K′),ΞT R(K′)|. Since the structural transformation is polynomial, the total
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number of individuals is doubly exponential in |K|. Thus, the existence of a leaf
derivation node labeled with a clash-free ABox can be checked by nondeterminis-
tically constructing an ABox that is doubly exponential in |K|.

5 Discussion

In this section we discuss several important aspects of our algorithm.

5.1 Subset Blocking

In traditional tableau algorithms for DLs without inverse roles, the pairwise
blocking from Definition 10 can improved to simpler subset blocking [2].

Definition 17 (Subset Blocking). Subset blocking is obtained from pairwise block-
ing (see Definition 10) by changing the notion of direct blocking: a blockable indi-
vidual s is directly blocked a blockable individual t if and only if t is not blocked,
t ≺ s, and LA(s) ⊆ LA(t).

Subset blocking is not applicable in the hypertableau setting. Consider the fol-
lowing knowledge base K9, consisting of an ABox A9 and a TBox corresponding
to the DL-clauses C9.

A9 = { C(a) }

C9 =

{
C(x)→ ∃R.C(x), C(x)→ ∃S.D(x),
S(x, y) ∧D(y)→ E(x), R(x, y) ∧ E(y)→ ⊥

}
(17)

On K9, the hypertableau algorithm can produce the ABox shown in Figure 11.
Individual c is now subset-blocked by a. If, however, we expanded ∃S.D(c) into
S(c, d) and D(d), we can derive E(c); together with R(a, c) and the DL-clause
R(x, y) ∧ E(y)→ ⊥, we get a contradiction.

5.2 Single Blocking

For DLs without inverse roles, such as SHOQ, or with inverse roles but without
nominals and number restrictions, such as SHIO, the pairwise blocking can be
improved to single blocking.
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Definition 18 (Single Blocking). Single blocking is obtained from pairwise block-
ing (see Definition 10) by changing the notion of direct blocking: a blockable indi-
vidual s is directly blocked a blockable individual t if and only if t is not blocked
t ≺ s, and LA(s) = LA(t).

The completeness of the hypertableau algorithm with single blocking for SHOQ
can be shown by modifying the model construction in Lemma 14.

Lemma 19. Let A be an ABox without inverse roles and C a set of HT-clauses
such that, for each r ∈ C, ( i) r does not contain inverse roles, and ( ii) each role
atom in r is of the form R(x, yi) for x the center variable and yi a branch variable.
If a derivation with single blocking for C and A exists in which a leaf node is labeled
with a clash-free ABox A′, then (C,A) is satisfiable.

PROOF. By slightly modifying the proof of Lemma 12, it is possible to show
the following property (*): each atom in A′ involving an atomic role is of the
form R(a, b), R(s, a), or R(s, s.i), for a and b named individuals and s a blockable
individual. Let A′′ be obtained from A′ by removing all assertions containing an
indirectly blocked individual. It is easy to see that no derivation rule is applicable
to A′′ and C. We now construct an interpretation I as follows.

4I = {s | s occurs in A′′}
sI = s for each individual s occurring in A′′
AI = {s | A(s) ∈ A′′}
RI = {〈s, t〉 | s is not blocked in A′′ and R(s, t) ∈ A′′} ∪

{〈s, t〉 | s is blocked in A′′ by s′ and R(s′, t) ∈ A′′}

Due to (*), it is straightforward to see that I |= A′′. Consider now each HT-clause
r ∈ C with a center variable x, and let σ be a mapping from the variables of r to
individuals in A′′ such that I |= σ(Ui) for each atom Ui from the antecedent of r.
Let σ′ be a mapping such that σ′(yi) = σ(yi) for each branch variable; furthermore,
σ′(x) = σ(x) if σ(x) is not blocked, and σ′(x) is the blocker of σ(x) otherwise. By
I |= σ(Ui) and the definition of I, we have that σ′(Ui) ∈ A′′. The Hyp-rule is not
applicable to A′′ and C for σ′, so σ′(Vj) ∈ A′′ for some atom in the consequent of
r. The definitions of I and of single blocking then imply I |= σ(Vj).

For DLs with inverse roles, single blocking must be applied with care in the
hypertableau setting. Consider the following knowledge base K10, consisting of an
ABox A10 and a set of DL-clauses C10.

A10 = { C(a) }
C10 = {C(x)→ ∃R.D(x), D(x)→ ∃S−.C(x), R(x, y1) ∧ S(x, y2)→ ⊥}

(18)

On K10, the hypertableau algorithm produces the ABox shown in Figure 12. The
individual c is single-blocked by a, so the algorithm terminates; an expansion of
∃R.D(c), however, would reveal that K10 is unsatisfiable. The problem arises be-
cause the DL-clause R(x, y1) ∧ S(x, y2)→ ⊥ contains two role atoms, which allows
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it to examine both the successors and the predecessor of x. Single blocking, however,
does not ensure that both predecessors and successors of x have been fully built.
We can correct this problem by requiring the normalized GCIs to contain at most
one ∀R.C concept. For example, if we replace our DL-clause with R(x, y1)→ Q(x)
and Q(x) ∧ S(x, y2)→ ⊥, then the first DL-clause additionally derives Q(a), so c
is not blocked by a any more.

We can apply single blocking to the DL SHIO provided we assume that each
DL-clause contains at most one role atom in the antecedent. We can always ensure
this by suitably renaming complex concepts with atomic ones.

Lemma 20. Let A be an ABox and C a set of HT-clauses such that, for each r ∈ C,
( i) r contains no atoms of the form R(x, x), and ( ii) the antecedent of r contains
at most one role atom. If a derivation with single blocking for C and A exists in
which a leaf node is labeled with a clash-free ABox A′, then (C,A) is satisfiable.

PROOF. Let A′′ be obtained from A′ by removing all assertions containing an
indirectly blocked individual. It is easy to see that no derivation rule is applicable
to A′′ and C. For an individual s occurring in A′′, let [s]A′′ = s if s is not blocked
in A′′, and let [s]A′′ = s′ if s′ is blocked in A′′ by s. Given A′′, we construct an
interpretation I as follows.

4I = {s | s occurs in A′′ and it is not blocked in A′′}
sI = [s]A′′ for each individual s occurring in A′′
AI = {[s]A′′ | A(s) ∈ A′′}
RI = {〈[s]A′′ , [t]A′′〉 | R(s, t) ∈ A′′}

It is straightforward to see that I |= A′′. Consider now each HT-clause r ∈ C,
and let σ be a mapping from the variables of r to the individuals in A′′ such that
I |= σ(Ui) for each atom Ui from the antecedent of r. If the antecedent of r does
not contain role atoms, it is trivial to see that I |= σ(Vj) for some atom Vj from the
consequent of r. Assume now that the antecedent of r contains an atom of the form
R(x, y). By the definition of I, individuals s and t then exist such that R(s, t) ∈ A′′,
σ(x) = [s]A′′ , and σ(y) = [t]A′′ . Let σ′ be such that σ′(x) = s and σ′(y) = t. Since
the Hyp-rule is not applicable to C and A′′ for σ′, we have σ′(Vj) ∈ A′′ for some
atom Vj from the consequent of r. By the definitions of I and single blocking, we
can then conclude that I |= σ(Vj).
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5.3 The Number of Root Individuals

SHOIQ is NExpTime-complete [37], and it is straightforward to extend this
proof to SHOIQ+. Thus, one might wonder whether the complexity result in
Theorem 16 can be sharpened to obtain a worst-case optimal decision procedure.
This, unfortunately, is not the case: we present an example on which our algorithm
generates a doubly-exponential number of root individuals. We use the well-known
encoding of binary numbers by concepts B0, B1, . . . , Bk−1: we assign to each indi-
vidual s in an ABox A a binary number `A(s) = bk−1 . . . b1b0 such that bi = 1 if and
only if Bi(s) ∈ A. Thus, using k concepts, we can encode 2k different binary num-
bers. Furthermore, for any atomic role R, using the well-known R-successor count-
ing formula [37], we can ensure that, whenever an individual t is an R-successor
of s in A, then `A(t) = (`A(s) + 1) mod 2k. We omit this formula for the sake of
brevity and refer the interested reader to [37]. Let K11 be the knowledge base con-
sisting of axioms (19)–(25). For the same reasons of brevity, we omit the DL-clauses
corresponding to the axioms in K11.

C(a)(19)

C v ∃R.C u ∃L.C(20)

(The R-successor formula for B0, . . . , Bk−1)(21)

(The L-successor formula for B0, . . . , Bk−1)(22)

B0 u . . . uBk v {b}(23)

A v ∀R−.A u ∀L−.A u ≤ 1L− u ≤ 1R−(24)

A(b)(25)

On K11, our algorithm can exhibit a derivation, schematically shown in Figure
13, in which a doubly exponential number of root individuals is introduced. Due
to (19)–(23), a sequence of 2k individuals a = x0, x1, . . . , x2k−1 = b connected by L
can be generated. Then, because of (24)–(25), all of the individuals in the sequence
can be labeled with A and turned into root individuals. But then, these individuals
cannot be used as blockers, so the algorithm can create an R successor x′1 of x0,
and then create a sequence of 2k − 1 individuals between x′1 and b connected by
L. Again, due to (24)–(25), all these individuals can be labeled with A and turned
into root individuals, and the process can be repeated. Eventually, the algorithm
can create a binary tree of root individuals of exponential depth, thus creating a
doubly exponential number of root individuals in total.

5.4 The Number of Blockable Individuals

If K is a SHIQ knowledge base, then Ξ(K) contains no nominal guard con-
cepts, so the NI -rule can never be applied in a derivation for Ξ(K). Thus, no new
root individuals are introduced, which eliminates a source of complexity in our
algorithm. Furthermore, in [11] the authors presented a tableau algorithm for the
basic DL ALC which, due to anywhere blocking, runs in NExpTime instead of
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2NExpTime. It is therefore interesting to compare this algorithm to ours. Let
K12 be the following knowledge base. Again, for the sake of brevity, we omit the
DL-clauses corresponding to the axioms in K12.

C(a)(26)

C v ∃L.C u ∃R.C(27)

(The R-successor formula for B0, . . . , Bk−1)(28)

(The L-successor formula for B0, . . . , Bk−1)(29)

B0 u . . . uBk v A(30)

∃L.A u ∃R.A v A(31)

Figure 14 schematically presents a derivation on K12 in which a doubly expo-
nential number of blockable individuals is introduced. 7 For the simplicity of pre-
sentation, we use single anywhere blocking. Due to (26)–(29), our algorithm can
create individuals a.1, a.2, a.1.1, a.1.2, a.1.1.1, a.1.1.2, and so on, such that s.1 is
an L-successor of s, and s.2 is an R-successor of s. After creating the individuals of
the form a.12k−1.1 and a.12k−1.2 where 12k−1 is a string of 2k−1 ones, each individ-
ual x.1 blocks x.2 (c.f. Figure 14a). But then, due to (30), a.12k−1.1 and a.12k−1.2
become instances of A. By (31), a.12k−1 is made an instance of A as well, so it does
not block its sibling a.12k−2.2 any more; hence, a.12k−2.2 is now expanded to the
exponential depth (c.f. Figure 14b). By repeating the process, the algorithm derives
that a.12k−2 is an instance of A, but then it does not block its sibling a.12k−3.2 (c.f.
Figure 14d). By repeating the process, the algorithm constructs a binary tree of
exponential depth, thus creating a doubly-exponential number of blockable nodes
in total (c.f. Figure 14d).

The nondeterministic exponential behavior is obtained in [11] by applying the
u-, t-, ∀-, and v-rules exhaustively before applying the ∃-rule. Such a strategy en-

7 In [30], we suggested informally that our algorithm should run in NExpTime on
SHIQ. As this example shows, this is not the case.
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sures that the label of an individual s is fully constructed before any successors of s
are introduced. On K12, this means that the GCI (31) is applied to each individual
s before introducing its successors. Thus, before the existentials on s are expanded,
the tableau algorithm from [11] introduces (∀L.¬A t ∀R.¬A t A)(s) and nonde-
terministically chooses one disjunct. The choices (∀L.¬A)(s) and (∀R.¬A)(s) will
lead to a clash, so the algorithm eventually derives A(s), before it expands the ex-
istentials on s and introduces s.1 and s.2. Thus, while generating only exponential
models in the worst case, this algorithm incurs a massive amount of nondetermin-
ism.

Nondeterministic exponential behavior can be guaranteed in our hypertableau
algorithm by nondeterministically fixing the label of each individual before apply-
ing the ≤-rule to it. This technique is similar to the one used in [38] in order to
obtain a PSpace decision procedure for concept satisfiability in a DL with inverse
roles but without GCIs. The performance results in Section 7, however, seem to
suggest that this might not be beneficial in practice. Still, it might be worth ex-
ploring whether nondeterministically adding concepts to labels of individuals can
be used as an optimization that would detect “early blocks” and thus prevent the
construction of large models.

6 Algorithm Optimizations

DL reasoning algorithms are often used in practice to compute a classification
of a knowledge base K—that is, to determine whether K |= A v B for each pair of
atomic concepts A and B occurring in K. Clearly, a näıve classification algorithm
would involve a quadratic number of calls to the subsumption checking algorithm,
each of which can potentially be highly expensive. To obtain acceptable levels of
performance, various optimizations have been developed that reduce the number of
subsumption checks [4] and the time required for each check [3, Chapter 9]. Along
these lines, we have developed two simple optimizations that, to the best of our
knowledge, have not been considered previously in literature.

6.1 Reading Classification Relationships from Concept Labels

Let (A, C) be an ABox and a set of DL-clauses obtained by clausifying a knowl-
edge base K, and let A and B be atomic concepts for which we want to check
whether K |= A v B; since A and B are atomic, this is the case if and only if
(A′, C) is unsatisfiable where A′ = A ∪ {A(a),¬B(b)} and a is a fresh individual.
Let A1 be a clash-free ABox labeling a leaf in a derivation from (A′, C). We can
use A1 to learn the following things about subsumption in K. The proof of these
claims is trivial, and we omit if for the sake of brevity.

(1) If C(a) ∈ A1 and the derivation of C(a) does not depend on a nondeterministic
choice, then K |= A v C.
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(2) If A1 has been obtained from A′ deterministically, then K |= A v C only if
C(a) ∈ A1.

(3) If C(b) ∈ A1 but D(b) 6∈ A1 for C and D concepts and b an individual that is
not blocked, then K 6|= C v D.

By the first two properties, if K is a deterministic knowledge base such as
GALEN, we can classify it using a linear number of calls to the hypertableau
algorithm: for each atomic concept A, we check satisfiability of (A ∪ {A(a)}, C); if
the algorithm produces a clash-free ABox A1, the superclasses of A are contained
in LA1(a). These optimizations are applicable in the case of tableau algorithms as
well; however, due to increased or-branching, they are likely to be less effective.

6.2 Caching Blocking Labels

Let T andR be a SHIQ TBox and RBox, respectively, and let C = ΞT R(T ∪ R).
Furthermore, let us assume that the classification of T ∪ R involves n consecutive
calls to the hypertableau algorithm for ({Ai(ai),¬Bi(ai)}, C). Then, if a derivation
from ({Ai(ai),¬Bi(ai)}, C) contains a leaf node labeled with a clash-free ABox
Ai, we can use the nonblocked individuals from Ai as potential blockers in all
subsequent satisfiability satisfiability checks of ({Aj(aj),¬Bj(aj)}, C) for j > i.

This is a simple consequence of the following fact. Let I1 and I2 be two models of
T ∪R such that 4I1 ∩4I2 = ∅; furthermore, let I be defined as 4I = 4I1 ∪4I2 ,
AI = AI1 ∪ AI2 , and RI = RI1 ∪RI2 , for each atomic concept A and each atomic
role R. Then, by a simple induction on the structure of axioms in T ∪ R, it is
trivial to show that I |= T ∪ R. This property does not hold in the presence of
nominals, which can impose a bound the number of elements in a concept; the
bound can be satisfied in I1 and I2 individually, but it can be violated in I.

Our optimization is correct because, instead of ({Ai(ai),¬Bi(ai)}, C), we can
check satisfiability of (Ai ∪ {Ai(ai),¬Bi(ai)}, C), and in doing so, we can use the
individuals from Ai as potential blockers due to anywhere blocking. This optimiza-
tion can be seen as a very simple form of model caching, and it has been key to
obtaining the results that we present in Section 7. For example, on GALEN only
one subsumption test is costly because it computes a substantial part of the model
of the TBox; all subsequent subsumption tests reuse large parts of that model.

In practice, we do not need to keep entire ABox Ai around; rather, for each
nonblocked blockable individual t with a predecessor t′, we simply need to retain
the sets LAi

(t), LAi
(t′), LA(t, t), LAi

(t, t′), and LAi
(t′, t).

7 Implementation and Evaluation

Based on the calculus from Section 4, we have implemented a prototype DL rea-
soner called HermiT. The implementation fully supports reasoning with SHOIQ+

ontologies, and can perform both consistency and subsumption testing, as well as
classification of atomic concepts in an ontology. An extensive discussion of the used
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implementation techniques is out of scope of this paper; we only briefly comment
on the implementation of anywhere blocking.

In the DL community, it is common understanding that anywhere blocking is
more costly than ancestor blocking because the set of possible blockers to be exam-
ined is potentially much larger. We developed, however, an efficient implementa-
tion of anywhere blocking. To determine the blocking status of all individuals in an
ABox A, our algorithm constructs a hash table in which individuals are indexed by
their five blocking labels. The table is created by scanning all individuals in A in
the increasing order of the precedence ≺. For each individual s in A, if the parent
of s is blocked, then s is indirectly blocked; otherwise, the algorithm tries to find
in the hash table an individual whose five blocking labels are equal to the ones of
s. If the hash table contains such an individual t, then s is directly blocked in A
by t; otherwise, s is not blocked in A so it is added into the hash table. With a
good hash table implementation, the blocking status of all individuals in A can be
determined with a linear number of table lookups.

To evaluate our reasoning algorithm in practice, we compared the HermiT with
state-of-the-art tableau reasoners Pellet 1.5.1 [31], and FaCT++ 1.1.10 [41]. Pellet
and FaCT++ are based on the existing reasoning algorithms [21], so they differ
from HermiT in the employed derivation rules and the ancestor blocking. In order
to estimate the practical impact of these two differences separately, we implemented
a version of HermiT with ancestor blocking, which we call HermiT-Anc.

We selected test ontologies from the Gardiner ontology suite [14]—a collection
of OWL ontologies gathered from the Web; the Open Biological Ontologies (OBO)
Foundry 8 —a collection of biology and life science ontologies; and the variants of
the GALEN ontology [33]—a large and complex biomedical ontology. Most ontolo-
gies from the Gardiner and OBO collections contain datatypes, which are currently
not supported in HermiT; therefore, we have converted datatypes in these ontolo-
gies to atomic classes. After eliminating syntactically incorrect OWL ontologies
from, we obtained a test suite consisting of 139 ontologies.

We measured the time needed to classify each test ontology using all of the
mentioned reasoners. All tests were performed on a 2.2 GHz MacBook Pro with
2 GB of physical memory. A classification attempt was aborted if it exhausted all
available memory (Java tools were allowed to use 1.5 GB of heap space), or if it
exceeded a timeout of 20 minutes.

The majority of the test ontologies—126 of them, to be precise—were classified
in under a second by HermiT, and under ten seconds by Pellet and FaCT++. For
these “trivial” ontologies, the performance of HermiT was comparable to that of all
other reasoners. Therefore, we discuss here only the tests results for “interesting”
ontologies—that is, ontologies that are either not trivial or on which the tested
reasoners exhibited a significant difference in performance.

Table 9 lists these “interesting” ontologies and presents the statistical informa-
tion about their contents. These ontologies include large biomedical ontologies,

8 http://obofoundry.org/
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Table 9
Statistics of Test Ontologies

Numbers of Axioms
Ontology Name Classes Individuals TBox ABox RBox
Fly Taxonomy 6,602 5,350 6,603 5,350 0
GO Term DB 20,526 0 28,997 0 1

Biological Process 14,955 73,901 27,051 73,901 1
NCI 27,652 0 46,940 0 0

MGED 216 579 430 642 0
BP XP OBOL 10,295 43,446 6,980 43,446 0

OWL Guide Food 139 207 386 453 9
FMA Lite 75,141 46,225 119,558 46,225 3

DLP ExtDnS 96 0 606 0 384
FMA-constitutional part 41,651 93 123,061 1 57

GALEN-horrocks 2,748 0 4,087 0 442
Not-GALEN 3,087 0 5,329 0 442

GALEN-doctored 2,748 0 4,087 0 649
GALEN-original 2,748 0 4,330 0 649
GALEN-module1 6,362 0 14,574 0 209

GALEN-full 23,136 0 36,205 0 1,966

such as several ontologies from the OBO corpus (Fly Taxonomy, Biological Pro-
cess, and BP XP OBOL), a version of the Gene Ontology (GO Term DB) [1], the
National Cancer Institute Thesaurus (NCI) [19], and two versions of the Foun-
dational Model of Anatomy (FMA Lite and FMA-constitutional part) [16]. The
Food ontology from the OWL Guide 9 is fairly small, but it makes heavy use of all
features of SHOIN .

Table 10 summarizes the results of tests on the “interesting” ontologies. In most
cases, HermiT performs as well as or better than the other reasoners. Because
HermiT can perform most of its reasoning deterministically, it can apply the opti-
mization described in Section 6.1 and thus reduce the total number of subsumption
tests. Furthermore, HermiT’s classification time is in most cases dominated by only
the first such satisfiability test, as the caching of blocking labels described in Sec-
tion 6.2 makes subsequent tests easy.

HermiT performs worse than Pellet and FaCT++ on the DLP ExtDnS ontology.
This ontology includes a substantially more complex RBox than most other ontolo-
gies in the test suite, with 384 role axioms. Our analysis revealed that HermiT’s
poor performance on DLP ExtDnS is due to the large number of GCIs introduced
by the encoding of transitivity described in Section 4.1.1. Consider the following

9 http://www.w3.org/TR/owl-guide/
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Table 10
Results of Performance Evaluation

Ontology Name
Classification Times (seconds)

HermiT HermiT-Anc Pellet FaCT++
Fly Taxonomy 1.1 1.2 1.2 5.3
GO Term DB 1.6 1.8 36.4 19.2

Biological Process 2.4 1.6 10.7 79.2
NCI 2.8 3.7 17.0 30.2

MGED 5.7 11.2 0.8 0.249
BP XP OBOL 8.7 8.5 505.1 1742.3

OWL Guide Food 19.3 29.6 14.2 1388.1
FMA Lite 43.8 error error error

DLP ExtDnS 95.8 error 7.1 0.1
FMA-constitutional part error error error error

GALEN-horrocks 1.5 1.5 13.5 156.9
Not-GALEN 1.6 1.8 54.1 200.4

GALEN-doctored 3.9 4.9 error 2836.1
GALEN-original 11.9 error error error
GALEN-module1 error error error error

GALEN-full error error error error

example knowledge base, which abstracts the RBox of DLP ExtDnS.

K13 =


R1 v R2, R2 v R3, . . . , Rm−1 v Rm,
Tra(R1), Tra(R2), . . . , Tra(Rm),
A v ∀Rm.B1 t ∀Rm.B2 t . . . t ∀Rm.Bn

(32)

The concept closure clos(K13) contains a concept ∀Ri.Bj for each 1 ≤ i ≤ m and
1 ≤ j ≤ n, and the encoding Ω(K13) contains an axiom ∀Ri.Bj v ∀Rk.(∀Rk.Bj)
for each i, j, and k such that 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ i. The number
of axioms introduced by the transitivity encoding can thus be cubic in the size
of the overall knowledge base (and quadratic in the size of the RBox). On DLP
ExtDnS, these additional axioms lead to inefficiency. In contrast, the ∀+-rule used
in standard tableau algorithm does not suffer from these problems.

HermiT also performs worse on than Pellet and FaCT++ on the MGED ontol-
ogy. This ontology contains nominals, as well as a moderately complex ABox (over
600 assertions). Since the ontology uses nominals, the ABox must be taken into
account when classifying the ontology. The completion graph caching optimiza-
tion [36] can be used to avoid repeating all same reasoning steps over the ABox
for each independent subsumption test; however, HermiT does not implement this
optimization yet, which may explain its worse performance. Furthermore, as ex-
plained in Section 6.2, the presence of nominals prevents us from applying the
caching of blocking labels. HermiT completes each subsumption test quite quickly
(on the order of 30ms), suggesting that HermiT should achieve performance levels
comparable to other reasoners once completion graph caching is implemented.
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Different versions of GALEN have commonly been used for testing performance
of DL reasoners. The full version of the ontology (called GALEN-full) cannot be
processed by any of the reasoners. To simplify the ontology, we extracted a module
(called GALEN-module1) from GALEN-full using the techniques from [17]. Al-
though the module is much smaller than the full ontology, no reasoner was able
to classify it either. Similarly, no reasoner could classify FMA-constitutional part.
Our analysis has shown that, due to a large number of cyclic axioms, on these
ontologies reasoners construct extremely large ABoxes and eventually exhaust all
available memory. To alleviate this problem, e are currently developing a reasoning
technique in which the ∃-rule is modified such that it nondeterministically tries to
reuse individuals form the ABox generated thus far. Our initial experiments have
shown very promising results [29].

Many simplified versions of GALEN have often been used in practice. GALEN-
horrocks and Not-GALEN are the versions found in the Gardiner suite; further-
more, GALEN-original is the version of GALEN from roughly 10 years ago, and
GALEN-doctored has been obtained from GALEN-original by removing about a
100 “difficult” axioms. As Table 10 shows, these ontologies are still challenging for
the existing reasoners. HermiT, however, can classify them quite efficiently; in fact,
HermiT is the only reasoner that can classify GALEN-original. All other reasoners,
as well as HermiT-Anc, quickly run our of memory on GALEN-original; this sug-
gests that, by drastically reducing sizes of generated ABoxes, anywhere blocking
can mean the difference between success and failure on complex ontologies.

On ontologies that can be processed by both HermiT and HermiT-Anc, both
reasoners show comparable performance, suggesting that the ABoxes generated on
these ontologies are not particularly large. On some of these ontologies (e.g., BP XP
OBOL and OWL Guide Food), Pellet and FaCT++ perform significantly slower;
this suggests that the increase in HermiT’s performance is mainly due to the hy-
pertableau rule application strategy and the reduced nondeterminism. Thus, while
the hypertableau strategy may not be as important as anywhere blocking in deter-
mining the practical limits of DL reasoners, it can lead to significant performance
improvements in practice.

8 Conclusion

In this paper, we presented a novel reasoning algorithm for DLs. The algorithm is
based on the hyperresolution inferences and anywhere blocking, which reduces the
nondeterminism due to GCIs and the sizes of the generated models. Furthermore,
the algorithm uses a novel approach to handling the interaction between nominals,
inverse roles, and number restrictions, which seems to be easier to implement in
practice than the existing techniques [21]. We have implemented our calculus and
have conducted an extensive performance comparison. Our results show that the
combination of novel optimizations significantly increase the performance of DL
reasoning in practice: our reasoner is currently the only one that can handle certain
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versions of GALEN—a medical terminology that has proven notoriously difficult
for DL reasoners.

To further improve the performance of DL reasoning, we shall investigate opti-
mizations that might help us reduce sizes of the generated models. Furthermore,
we shall try to extend our technique to the DL SROIQ, which underpins the
OWL 1.1—the extension of OWL currently being standardized by the W3C.
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